
JavaScript Mastery
By: Andrew Gerst
http://about.me/agerst (http://about.me/agerst)
JavaScript Mastery (Source) (http://hnswave.co/mastery/javascript.html)

Preface
This is a book about the JavaScript programming language. It is intended for programmers transitioning from 
another language such as Java as well as programmers who have been working with JavaScript at a novice level and 
are now ready for a more sophisticated relationship with the language.

JavaScript is a surprisingly powerful language. It's also small enough that it's easily mastered. My goal here is 
to help you to learn to think in JavaScript. This book isn't exhaustive about the language and won't contain 
everything you need to know. Instead, this book just contains the things that are really important and the things 
I wished someone told me when I started learning JavaScript. By the end of this book you should discover the 
different components of JavaScript and the ways these components can work together.

The amazing thing about JavaScript is that it is possible to get work done with it without knowing much about the 
language, or even knowing much about programming. It is a language with enormous expressive power. It is even 
better when you know what you're doing. Programming is a difficult business. It should never be undertaken in 
ignorance.

Here are the things I expect a front-end engineer to know without any outside help:

DOM structure - how nodes are related to one another and how to traverse from one to the next.
DOM manipulation - how to add, remove, move, copy, create, and find nodes.
Events - how to use them and the major differences between IE and the DOM event models.
XMLHttpRequest - what it is, how to perform a complete GET request, how to detect errors.
Strict vs. quirks modes - how to trigger each and why this matters.
The box model - how margin, padding, and border are related and the difference between border-box (standards 
mode) and content-box (old Internet Explorer) sizing.
Block vs. inline elements - how to manipulate using CSS, how they effect things around them and your ability to 
style them.
Floating elements - how to use them, troubles with them, and how to work around the troubles.
HTML vs. XHTML - how they're different, why you might want to use one over the other.
JSON - what it is, why you'd want to use it, how to actually use it, implementation details.

Table of Contents
What is JavaScript?
Introduction & History

Very Brief History
Birth at Netscape
Server-side JavaScript
Adoption by Microsoft
Standardization
Later developments
Trademark
ECMAScript

JavaScript and Java
Hello World

alert
document.write

Features
Imperative and structured

http://about.me/agerst
http://hnswave.co/mastery/javascript.html


Dynamic
Functional
Prototype-based
Miscellaneous

Object Everything
Trying Programs
Testing Script Performance
JavaScript Debugging
Functions

Self-Invoking Functions
void Operator
delete operator
Reserved Words
parseInt function
Declarations, Names, and Hoisting
JavaScript Datatypes
Chaining Methods
Saving State
Creating shortcuts
Statements and Expressions

The function Statement Versus the function Expression
ECMAScript 5 Strict Mode
ECMAScript 6 (Harmony)
Object.create(proto [, propertiesObject ])
Bitwise Operators

Thinking about Bits
Math.round ~~ hack

jQuery
What is jQuery?
$.noConflict()

Event Listeners
addEventListener
readyState
The value of this within the handler
Legacy Internet Explorer and attachEvent
Old way to add event handlers
Memory Issues
Document Ready

XHR Eval
Real Typeof
CSS Style Manipulation
DOM Manipulation

Modify Node Values
document.documentElement
document.body

JavaScript CSS Selector Engine Timeline
Browser Quirks

XHR
Common CSS Tweaks in IE

So, you think you know JavaScript?
1. Scope
2. Scope / Function Hoisting and Returning
3. Scope
4. Scope and Variable Initialization
5. Variable and Function Names
6. Variable Initialization
7. Modifying Arguments Variable
8. Context Using Null
9. Closure
10. Primitive Objects
11. Hoisting Duplicates Behavior
12. Math.min / Math.max



What is JavaScript?
The World's Most Misunderstood Programming Language

JavaScript is a cross-platform, object-oriented scripting language.

Core JavaScript contains a core set of objects, such as Array, Date, and Math, and a core set of language elements 
such as operators, control structures, and statements. Core JavaScript can be extended for a variety of purposes 
by supplementing it with additional objects.

Netscape invented JavaScript, and JavaScript was first used in Netscape browsers.

JavaScript is a language with more than its share of bad parts. It went from nonexistence to global adoption in an 
alarmingly short period of time. It never had an interval in the lab when it could be tried out and polished. It 
went straight into Netscape Navigator 2 just as it was, and it was very rough. When Java applets failed, 
JavaScript became the Language of the Web by default. JavaScript's popularity is almost completely independent of 
its qualities as a programming language.

JavaScript is an important language because it is the language of the web browser. Its association with the 
browser makes it one of the most popular programming languages in the world. At the same time, it is one of the 
most despised programming languages in the world. The API of the browser, the Document Object Model (DOM) is quite 
awful, and JavaScript is unfairly blamed. The DOM would be painful to work with in any language. The DOM is poorly 
specified and inconsistently implemented.

The rise of JavaScript from a simple input validator to a powerful programming language could not have been 
predicted. JavaScript is at once a very simple and very complicated language that takes minutes to learn but years 
to master. To begin down the path to using JavaScript's full potential, it is important to understand its nature, 
history, and limitations.

Introduction & History
JavaScript (sometimes abbreviated JS) is a prototype-based scripting language that is dynamic, weakly typed and 
has first-class functions. It is a multi-paradigm language, supporting object-oriented, imperative, and functional 
programming styles.

JavaScript was formalized in the ECMAScript language standard and is primarily used in the form of client-side 
JavaScript, implemented as part of a Web browser in order to create enhanced user interfaces and dynamic websites. 
This enables programmatic access to computational objects within a host environment.

JavaScript's use in applications outside Web pages--for example in PDF documents, site-specific browsers, and 
desktop widgets--is also significant. Newer and faster JavaScript VMs and frameworks built upon them (notably 
Node.js) have also increased the popularity of JavaScript for server-side web applications.

JavaScript uses syntax influenced by that of C. JavaScript copies many names and naming conventions from Java, but 

13. Hoisting / Multiple Function Statements
#. Topic

Quiz Answers
FAQ

What exactly is undefined?
Can you assign undefined to a variable?
What does if (!foo) actually do?
Why should you split script tag?

Additional Reading / Watching
Tests / Experiments
Recommended YouTube Videos



the two languages are otherwise unrelated and have very different semantics. The key design principles within 
JavaScript are taken from the Self and Scheme programming languages.

Very Brief History

Ten days in May 1995 "Mocha"
September 1995: "LiveScript"
December 1995: "JavaScript"
1996-1997: ECMA-262 Ed. 1 (http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-
262,%201st%20edition,%20June%201997.pdf), aka ES1
1999: ES3: modern JS baseline
2005: the Ajax revolution
2008: ES4 RIP, Harmony founded in July
2009: ES5: "use strict", JSON, Object.create, etc.
2012: ES6 under way: modules, let, proxies, etc.

Birth at Netscape

JavaScript was originally developed in Netscape, by Brendan Eich. Battling with Microsoft over the Internet, 
Netscape considered their client-server solution as a distributed OS, running a portable version of Sun 
Microsystems' Java. Because Java was a competitor of C++ and aimed at professional programmers, Netscape also 
wanted a lightweight interpreted language that would complement Java by appealing to nonprofessional programmers, 
like Microsoft's Visual Basic.

Developed under the name Mocha, LiveScript was the official name for the language when it first shipped in beta 
releases of Netscape Navigator 2.0 in September 1995, but it was renamed JavaScript when it was deployed in the 
Netscape browser version 2.0B3.

The change of name from LiveScript to JavaScript roughly coincided with Netscape adding support for Java 
technology in its Netscape Navigator web browser. The final choice of name caused confusion, giving the impression 
that the language was a spin-off of the Java programming language, and the choice has been characterized by many 
as a marketing ploy by Netscape to give JavaScript the cachet of what was then the hot new web programming 
language. It has also been claimed that the language's name is the result of a co-marketing deal between Netscape 
and Sun, in exchange for Netscape bundling Sun's Java runtime with its then-dominant browser.

Contrary to what the name suggests, JavaScript has very little to do with the programming language named Java. The 
similar name was inspired by marketing considerations, rather than good judgement. In 1995, when JavaScript was 
introduced by Netscape, the Java language was being heavily marketed and was gaining in popularity. Apparantely, 
someone thought it a good idea to try and ride along on this success. Now we are stuck with the name.

Server-side JavaScript

Netscape introduced an implementation of the language for server-side scripting with Netscape Enterprise Server, 
first released in December, 1994 (soon after releasing JavaScript for browsers). Since the mid-2000s, there has 
been a proliferation of server-side JavaScript implementations. Node.js is one recent notable example of server-
side JavaScript being used in real-world applications.

Adoption by Microsoft

JavaScript very quickly gained widespread success as a client-side scripting language for web pages. Microsoft 
introduced JavaScript support in its own web browser, Internet Explorer, in version 3.0, released in August 1996. 
Microsoft's webserver, Internet Information Server, introduced support for server-side scripting in JavaScript 
with release 3.0 (1996). Microsoft started to promote webpage scripting using the umbrella term Dynamic HTML.

http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf


Microsoft's JavaScript implementation was later renamed JScript to avoid trademark issues. JScript added new date 
methods to fix the Y2K-problematic methods in JavaScript, which were based on Java's java.util.Date class.

Microsoft did not want to deal with Sun about the trademark issue, and so they called their implementation 
JScript. A lot of people think that JScript and JavaScript are different but similar languages. That's not the 
case. They are just different names for the same language, and the reason the names are different was to get 
around trademark issues.

Standardization

In November 1996, Netscape announced that it had submitted JavaScript to Ecma International for consideration as 
an industry standard, and subsequent work resulted in the standardized version named ECMAScript.

Later developments

JavaScript has become one of the most popular programming languages on the web. Initially, however, many 
professional programmers denigrated the language because its target audience was web authors and other such 
"amateurs", among other reasons. The advent of Ajax returned JavaScript to the spotlight and brought more 
professional programming attention. The result was a proliferation of comprehensive frameworks and libraries, 
improved JavaScript programming practices, and increased usage of JavaScript outside of web browsers, as seen by 
the proliferation of server-side JavaScript platforms.

In January 2009, the CommonJS project was founded with the goal of specifying a common standard library mainly for 
JavaScript development outside the browser.

Trademark

Today, "JavaScript" is a trademark of Oracle Corporation. It is used under license for technology invented and 
implemented by Netscape Communications and current entities such as the Mozilla Foundation.

ECMAScript

Related to JavaScript is a thing called ECMAScript. When browsers other than Netscape started to support 
JavaScript, or something that resembled it, a document was written to describe precisely how the language should 
work. The language described in this document is called ECMAScript, after the organization that standardized it.

ECMAScript describes a general-purpose programming language, and does not say anything about the integration of 
this language in a web browser. JavaScript is ECMAScript plus extra tools for dealing with Internet pages and 
browser windows.

A few other pieces of software use the language described in the ECMAScript document. Most importantly, the 
ActionScript language used by Flash is based on ECMAScript (though it does not precisely follow the standard). 
Flash is a system for adding things that move and make lots of noise to web-pages. Knowing JavaScript won't hurt 
if you ever find yourself learning to build Flash movies.

There are five editions of ECMA-262 (http://www.ecma-international.org/publications/standards/Ecma-262-arch.htm) 
published. ECMAScript Edition 1 (http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-
262,%201st%20edition,%20June%201997.pdf) was based on several originating technologies, the most well known being 
JavaScript™ (Netscape Communications) and JScript™ (Microsoft Corporation). The development of this Standard was 
started in November 1996. The ECMA Standard was adopted by the ECMA General Assembly of June 1997. Please note 
that for ECMAScript Edition 4 the Ecma standard number "ECMA-262 Edition 4" was reserved but not used in the Ecma 
publication process. Therefore "ECMA-262 Edition 4" as an Ecma International publication does not exist. Work on a 
future edition, codenamed "Harmony", is in progress.

http://www.ecma-international.org/publications/standards/Ecma-262-arch.htm
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf


JavaScript and Java
JavaScript and Java are similar in some ways but fundamentally different in some others. The JavaScript language 
resembles Java but does not have Java's static typing and strong type checking. JavaScript follows most Java 
expression syntax, naming conventions and basic control-flow constructs which was the reason why it was renamed 
from LiveScript to JavaScript.

In contrast to Java's compile-time system of classes built by declarations, JavaScript supports a runtime system 
based on a small number of data types representing numeric, Boolean, and string values. JavaScript has a 
prototype-based object model instead of the more common class-based object model. The prototype-based model 
provides dynamic inheritance; that is, what is inherited can vary for individual objects. JavaScript also supports 
functions without any special declarative requirements. Functions can be properties of objects, executing as 
loosely typed methods.

JavaScript is a very free-form language compared to Java. You do not have to declare all variables, classes, and 
methods. You do not have to be concerned with whether methods are public, private, or protected, and you do not 
have to implement interfaces. Variables, parameters, and function return types are not explicitly typed.

Java is a class-based programming language designed for fast execution and type safety. Type safety means, for 
instance, that you can't cast a Java integer into an object reference or access private memory by corrupting Java 
bytecodes. Java's class-based model means that programs consist exclusively of classes and their methods. Java's 
class inheritance and strong typing generally require tightly coupled object hierarchies. These requirements make 
Java programming more complex than JavaScript programming.

In contrast, JavaScript descends in spirit from a line of smaller, dynamically typed languages such as HyperTalk 
and dBASE. These scripting languages offer programming tools to a much wider audience because of their easier 
syntax, specialized built-in functionality, and minimal requirements for object creation.

A common misconception is that JavaScript is similar or closely related to Java. It is true that both have a C-
like syntax, the C language being their most immediate common ancestor language. They are both object-oriented, 
typically sandboxed (when used inside a browser), and are widely used in client-side Web applications. In 
addition, JavaScript was designed with Java's syntax and standard library in mind. In particular, all Java 
keywords were reserved in original JavaScript, JavaScript's standard library follows Java's naming conventions, 
and JavaScript's Math and Date objects are based on classes from Java 1.0.

"JS had to 'look like Java' only less so, [it had to] be Java's dumb kid brother or boy-hostage sidekick. Plus, I 
had to be done in ten days or something worse than JS would have happened."
--Brendan Eich

However, the similarities end there. Java has static typing; JavaScript's typing is dynamic (meaning a variable 
can hold an object of any type and cannot be restricted). JavaScript is weakly typed ('0.0000' == 0, 0 == "", 
false == "", etc.) while Java is more strongly typed. Java is loaded from compiled bytecode; JavaScript is loaded 
as human-readable source code. Java's objects are class-based; JavaScript's are prototype-based. JavaScript also 
has many functional programming features based on the Scheme language.

Hello World
There is no built-in I/O functionality in JavaScript; the runtime environment provides that. Here are a couple 
methods of producing output in the browser.

/**
* Hello World
*/
 
alert("Hello World!");
window.alert("Hello World!");
window['alert']("Hello World!");



console.log("Hello World!");
document.write("Hello World!");
document.writeln("Hello World!");
document.body.innerHTML = "Hello World!";
document.body.appendChild(document.createTextNode("Hello World!"));
document.documentElement.lastChild.appendChild(document.createTextNode("Hello World!"));

alert

An alert box is often used if you want to make sure information comes through to the user. When an alert box pops 
up, the user will have to click "OK" to proceed.

The alert dialog should be used for messages which do not require any response on the part of the user, other than 
the acknowledgement of the message. Dialog boxes are modal windows - they prevent the user from accessing the rest 
of the program's interface until the dialog box is closed. For this reason, you should not overuse any function 
that creates a dialog box (or modal window).

alert() is a method of the window object that cannot interpret HTML tags.

alert() must output a string, so it must first convert the value to string - it is very important if you want to 
check what value you have at some point and you picked alert() to fulfill that task. It also stops the execution 
of the script (this may be useful sometimes).

- blocks the entire browser and javascript thread
- only prints strings
- requires user interaction to continue (this means you can't automate browser usage)
- blocked by common popup blockers
- doesn't work in non-browser environments like node.js (however console.log does work in node.js)

alert(
    'This is an alert with basic formatting\n\n'
    + '\t• list item 1\n'
    + '\t• list item 2\n'
    + '\t• list item 3\n\n'
    + '▬▬▬▬▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬▬▬▬\n\n'
    + 'Simple table\n\n'
    + 'Char\t| Result\n'
    + '\\n\t| line break\n'
    + '\\t\t| tab space'
);

Click here to see an alert with basic formatting

document.write

The document.write methods outputs a string directly into page.

This is one of most ancient methods of appending to a document. It is very rarely used in modern web applications, 
but still it has it's special place.

When document is loading, a script may document.write(text) into the document. The text will be rendered same way 
as if it were in HTML.

There are no restrictions on the contents of document.write. It doesn't have to output valid tags, close them or 
anything.



It is very fast, because the browser doesn't have to modify an existing DOM structure.

Sometimes the scripts are added by the document.write. Don't use this method, as the rest of the page will await 
for script loading and execution.

There is also a variation named document.writeln(text) which appends '\n' after the text.

When the page finishes loading, the document becomes closed. An attempt to document.write in it will cause the 
contents to be erased.

Features
The following features are common to all conforming ECMAScript implementations, unless explicitly specified 
otherwise.

Imperative and structured

JavaScript supports much of the structured programming syntax from C (e.g., if statements, while loops, switch 
statements, etc.). One partial exception is scoping: C-style block-level scoping is not supported (instead, 
JavaScript has function-level scoping). JavaScript 1.7, however, supports block-level scoping with the let 
keyword. Like C, JavaScript makes a distinction between expressions and statements. One syntactic difference from 
C is automatic semicolon insertion, in which the semicolons that terminate statements can be omitted.

Dynamic

dynamic typing
As in most scripting languages, types are associated with values, not with variables. For example, a variable x 
could be bound to a number, then later rebound to a string. JavaScript supports various ways to test the type of 
an object, including duck typing.

object based
JavaScript is almost entirely object-based. JavaScript objects are associative arrays, augmented with prototypes 
(see below). Object property names are string keys: obj.x = 10 and obj['x'] = 10 are equivalent, the dot notation 
being syntactic sugar. Properties and their values can be added, changed, or deleted at run-time. Most properties 
of an object (and those on its prototype inheritance chain) can be enumerated using a for...in loop. JavaScript 
has a small number of built-in objects such as Function and Date.

run-time evaluation
JavaScript includes an eval function that can execute statements provided as strings at run-time.

Functional

first-class functions
Functions are first-class; they are objects themselves. As such, they have properties and methods, such as .call() 
and .bind(); and they can be assigned to variables, passed as arguments, returned by other functions, and 
manipulated like any other object. Any reference to a function allows it to be invoked using the () operator.

nested functions and closures
"Inner" or "nested" functions are functions defined within another function. They are created each time the outer 
function is invoked. In addition to that, each created function forms a lexical closure: the lexical scope of the 
outer function, including any constants, local variables and argument values, become part of the internal state of 
each inner function object, even after execution of the outer function concludes.



Prototype-based

prototypes
JavaScript uses prototypes instead of classes for inheritance. It is possible to simulate many class-based 
features with prototypes in JavaScript.

functions as object constructors
Functions double as object constructors along with their typical role. Prefixing a function call with new creates 
a new object and calls that function with its local this keyword bound to that object for that invocation. The 
constructor's prototype property determines the object used for the new object's internal prototype. JavaScript's 
built-in constructors, such as Array and String, also have prototypes that can be modified.

functions as methods
Unlike many object-oriented languages, there is no distinction between a function definition and a method 
definition. Rather, the distinction occurs during function calling; a function can be called as a method. When a 
function is called as a method of an object, the function's local this keyword is bound to that object for that 
invocation.

Miscellaneous

run-time environment
JavaScript typically relies on a run-time environment (e.g. in a web browser) to provide objects and methods by 
which scripts can interact with "the outside world". In fact, it relies on the environment to provide the ability 
to include/import scripts (e.g. HTML <script> elements). (This is not a language feature per se, but it is common 
in most JavaScript implementations.)

variadic functions
An indefinite number of parameters can be passed to a function. The function can access them through formal 
parameters and also through the local arguments object.

array and object literals
Like many scripting languages, arrays and objects (associative arrays in other languages) can each be created with 
a succinct shortcut syntax. In fact, these literals form the basis of the JSON data format.

regular expressions
JavaScript also supports regular expressions in a manner similar to Perl, which provide a concise and powerful 
syntax for text manipulation that is more sophisticated than the built-in string functions.

Object Everything
In JavaScript, almost everything is an object, and an object is just a hashmap. All primitive types except null 
and undefined are treated as objects. They can be assigned properties (assigned properties of some types are not 
persistent), and they have all characteristics of objects.

All objects in JavaScript inherit from at least one other object. The object being inherited from is known as the 
prototype, and the inherited properties can be found in the prototype object of the constructor.

var myObj = new Object(),
    str = "myString",
    rand = Math.random(),
    obj = new Object();
  
myObj.type = "Dot syntax";



myObj["date created"] = "String with space";
myObj[str] = "String value";
myObj[rand] = "Random Number";
myObj[obj] = "Object";
myObj[""] = "Even an empty string";
 
// myObj[obj] can be referenced by myObj[new Object()], myObj[{}], as well as myObj["[object Object]"]

myObj -> Array
(
    [type] => Dot syntax
    [date created] => String with space
    [myString] => String value
    [0.6006768019869924] => Random Number
    [[object Object]] => Object
    [] => Even an empty string
)

Trying Programs
Now that you've been introduced to the language I'd like to provide a couple methods so you can try JavaScript 
yourself.

http://jsfiddle.net/ (http://jsfiddle.net/)
http://jsbin.com/ (http://jsbin.com/)
http://livecoding.io/ (http://livecoding.io/)
https://compilr.com/ (https://compilr.com/)
http://plnkr.co/ (http://plnkr.co/)

Minify And Beautify JavaScript Code

http://dean.edwards.name/packer/ (http://dean.edwards.name/packer/)
http://jsbeautifier.org/ (http://jsbeautifier.org/)

Another approach is to simply create an HTML file containing the program and load it in your browser. For example, 
you could create a file called test.html with the following content:

<html><body><script type="text/javascript">

document.write("Hello World!");

</script></body></html>

Hosting Environments

XAMPP (http://www.apachefriends.org/en/xampp.html)
Heroku (https://www.heroku.com/)
000webhost (http://www.000webhost.com/)
Webs (http://www.webs.com/)
Google Sites (https://sites.google.com/)

Testing Script Performance

http://jsfiddle.net/
http://jsbin.com/
http://livecoding.io/
https://compilr.com/
http://plnkr.co/
http://dean.edwards.name/packer/
http://jsbeautifier.org/
http://www.apachefriends.org/en/xampp.html
https://www.heroku.com/
http://www.000webhost.com/
http://www.webs.com/
https://sites.google.com/


Sometimes after all day long coding your code becomes not so effective and your code (usually interface related) 
becomes slow. You have done so many changes and don't exactly know what is slowing it down. In cases like this 
(and of course, plenty other cases) you can test your JavaScript code performance.

A widely used threshold of time is 100 ms for when people start to notice latency in applications.

Console can be used for logging or printing out debugging information to the console. Console also has one handy 
method for tracking time in milliseconds.

You can use this script to test your JavaScript code. timerName in the code can be any name for your timer. Don't 
forget to end your timer using the same name for timeEnd().

console.time('timerName');
 
// code goes here
 
console.timeEnd('timerName');

There are also sites available online that have many different test case examples for JavaScript performance 
across multiple different browsers.

http://jsperf.com/ (http://jsperf.com/)

Google Web Toolkit has a browser extension called Speed Tracer, it's a tool to help you identify and fix 
performance problems in your web applications.

Using Speed Tracer you are able to get a better picture of where time is being spent in your application. This 
includes problems caused by JavaScript parsing and execution, layout, CSS style recalculation and selector 
matching, DOM event handling, network resource loading, timer fires, XMLHttpRequest callbacks, painting, and more.

https://developers.google.com/web-toolkit/speedtracer/ (https://developers.google.com/web-toolkit/speedtracer/)

JSLitmus is a lightweight tool for creating ad-hoc JavaScript benchmark tests.

http://www.broofa.com/Tools/JSLitmus/ (http://www.broofa.com/Tools/JSLitmus/)

This is how you examine the performance between function expression and function constructor using JSLitmus:

JSLitmus.test('new Function ... ', function(){
    return new Function('for(var i=0; i<100; i++) {}'); 
});
 
JSLitmus.test("function() ...", function(){
    return (function(){ for(var i=0; i<100; i++) {} });
});

Run a free website speed test from multiple locations around the globe using real browsers (IE and Chrome) and at 
real consumer connection speeds. You can run simple tests or perform advanced testing including multi-step 
transactions, video capture, content blocking and much more. Your results will provide rich diagnostic information 
including resource loading waterfall charts, Page Speed optimization checks and suggestions for improvements.

http://www.webpagetest.org/ (http://www.webpagetest.org/)

Successful societies and institutions recognize the need to record their history - this provides a way to review 
the past, find explanations for current behavior, and spot emerging trends. In 1996 Brewster Kahle realized the 
cultural significance of the Internet and the need to record its history. As a result he founded the Internet 
Archive which collects and permanently stores the Web's digitized content.

http://jsperf.com/
https://developers.google.com/web-toolkit/speedtracer/
http://www.broofa.com/Tools/JSLitmus/
http://www.webpagetest.org/


In addition to the content of web pages, it's important to record how this digitized content is constructed and 
served. The HTTP Archive provides this record. It is a permanent repository of web performance information such as 
size of pages, failed requests, and technologies utilized. This performance information allows us to see trends in 
how the Web is built and provides a common data set from which to conduct web performance research.

http://httparchive.org/ (http://httparchive.org/)

We can always measure time taken by any function by simple date object. Here I show a function used to calculate 
the time elapsed while a given function is executed.

var start = +new Date(); // log start timestamp
fn();
var end = +new Date(); // log end timestamp
var diff = end - start;
 
var perf = function(testName, fn){
    var startTime = new Date().getTime();
    fn();
    var endTime = new Date().getTime();
    console.log(testName + ": " + (endTime - startTime) + "ms");
};

JavaScript works with the number of milliseconds since the epoch (1 January 1970 00:00:00 UTC) whereas most other 
languages work with the seconds. You could work with milliseconds but as soon as you pass a value to say PHP, the 
PHP native functions will probably fail. So to be sure it's always a good idea to use the seconds, not 
milliseconds.

To get the Unix timestamp such as the one returned by PHP time() function, divide this number by 1000, round or 
floor if necessary.

Bitwise OR | 0 is similar to Math.floor() since it is a bit operation (that does not work with floats). usually 
its even faster than Math.floor() since it is not a function call, it is a native javascript operator.

All bitwise operations except unsigned right shift, >>>, work on signed 32-bit integers. So using bitwise 
operations will convert a float to an integer. This is truncation as opposed to flooring.

Disadvantage: it only works up to 2̂31-1 which is around 2 billion (10̂9). The max Number value is around 10̂308.

Here is a jsperf test comparing Floor with Bitwise OR.

http://jsperf.com/or-vs-floor/2 (http://jsperf.com/or-vs-floor/2)

var unixDate = {};
unixDate["Math.round(+new Date() / 1000)"] = Math.round(+new Date() / 1000);
unixDate["Math.floor((new Date()).getTime() / 1000)"] = Math.floor((new Date()).getTime() / 1000);
unixDate["Date.now() / 1000 | 0"] = Date.now() / 1000 | 0;

unixDate -> Array
(
    [Math.round(+new Date() / 1000)] => 1385949933
    [Math.floor((new Date()).getTime() / 1000)] => 1385949933
    [Date.now() / 1000 | 0] => 1385949933
)

Here are varous methods of making the Date.now() function available on all browsers since Date.now() is from 

http://httparchive.org/
http://jsperf.com/or-vs-floor/2


JavaScript 1.5, and is not supported on IE 8.

var $time = Date.now || function(){
    return +new Date;
};
 
$time();
 
// OR
 
if (typeof Date.now == "undefined") {
    Date.now = function(){return new Date().getTime()};
}

The various methods used to get the current timestamp (number of milliseconds since the epoch) include:

var myDate = new Object();
myDate["Date.now()"] = Date.now();
myDate["+new Date()"] = +new Date();
myDate["new Date().getTime()"] = new Date().getTime();
myDate["Number(new Date())"] = Number(new Date());
myDate["new Date().valueOf()"] = new Date().valueOf();

myDate -> Array
(
    [Date.now()] => 1385949933342
    [+new Date()] => 1385949933342
    [new Date().getTime()] => 1385949933342
    [Number(new Date())] => 1385949933342
    [new Date().valueOf()] => 1385949933342
)

Here is a link to a jsperf test comparing Date.now(), (new Date()).getTime(), and +new Date(). As you can see the 
(new Date()) has parentheses they are optional for object constructors, they are superfluous.

http://jsperf.com/date-now-vs-new-date-gettime/4 (http://jsperf.com/date-now-vs-new-date-gettime/4)

Date.now() is the fastest while +new Date() is the slowest.

The method performance.now() is quickly getting implemented across browsers. performance.now() is a measurement of 
floating point milliseconds since that particular page started to load.

There are a few situations where you'd use this high resolution timer instead of grabbing a basic timestamp:
- benchmarking
- game or animation runloop code
- calculating framerate with precision
- cueing actions or audio to occur at specific points in an animation or other time-based sequence

The high resolution timer is currently available in Chrome (Stable) as window.performance.webkitNow(), and this 
value is generally equal to the new argument value passed into the requestAnimationFrame callback. Pretty soon, 
WebKit will drop its prefix and this will be available through performance.now(). The WebPerfWG in particular, led 
by Jatinder Mann of Microsoft, has been very successful in unprefixing their features quite quickly.

In summary, performance.now() is...
- a double with microseconds in the fractional

http://jsperf.com/date-now-vs-new-date-gettime/4


- relative to the navigationStart of the page rather than to the UNIX epoch
- not skewed when the system time changes

JavaScript Debugging
A debugging tool is essential for JavaScript development. Firefox provides a debugger via the Firebug extension; 
Safari and Chrome provide built-in consoles.

Each console offers:
- single- and multi-line editors for experimenting with JavaScript
- an inspector for looking at the generated source of your page
- a Network or Resources view, to examine network requests

When you are writing JavaScript code, you can use the following methods to send messages to the console:

console.log() for sending general log messages
console.dir() for logging a browseable object
console.warn() for logging warnings
console.error() for logging error messages

Other console methods are also available, though they may differ from one browser to another. The consoles also 
provide the ability to set break points and watch expressions in your code for debugging purposes.

Typing $0 in Chrome will log the currently selected element.
Typing $1 in Chrome will log the previously selected element and so forth.
Typing $n in Chrome will log the n  previously selected element.

Functions
Different methods of invoking a function declaration. Even though in some browsers using void and delete can lead 
to faster results it is still recommended to use the parentheses or a bang because they are programming 
conventions that indicate the function is going to be invoked. JS will not allow you to fire off a function 
declaration (because of a concept of "variable hoisting".

http://jsperf.com/bang-function (http://jsperf.com/bang-function)
http://jsperf.com/self-invoking-function (http://jsperf.com/self-invoking-function)

Self-Invoking Functions

Ideally you should be able to do all this simply as:

function(){
    // do stuff
}();

That means declare anonymous function and execute it. But that will not work due to specifics of JS grammar.

So shortest form of achieving this is to use some expression e.g. UnaryExpression (and so CallExpression):

(function(){})();

th

http://jsperf.com/bang-function
http://jsperf.com/self-invoking-function


(function(){}());
!function(){}();
-function(){}();
+function(){}();
~function(){}();
void function(){}();
delete function(){}();

The opening perenthesis and all of the other operators change the statement from a function declaration to a 
function expression.

In Javascript, a line beginning with function is expected to be a function statement and is supposed to look like:

function doSomething(){}

A self-invoking function like:

function(){}();

doesn't fit that form (and will cause a syntax error at the first opening paren because there is no function 
name), so the parens are used to delineate an anonymous function expression.

But anything that creates an expression (as opposed to a function statement) will do, so hence the !. It's telling 
the interpreter that this is not a function statement. Other than that, operator precedence dictates that the 
function is invoked before the negation.

Anybody reading the !function at the top of a large block of code will expect a self-invocation, the way we are 
conditioned already to expect the same when we see (function. Except that we will lose those annoying parentheses. 
I would expect that's the reason, as opposed to any savings in speed or character count. The syntax with the ! is 
useful if you write javascript without semicolons.

Inside and outside parens are identical unless you add new beforehand and .something afterwards.

Code 1:

new (function(){
    this.prop = 4;
}) ().prop;

This code creates a new instance of this function's class, then gets the prop property of the new instance.

It returns 4.

It's equivalent to:

function MyClass(){
    this.prop = 4;
}
new MyClass().prop;

Code 2:



new (function(){
    return { Class: function(){} }; 
}()).Class;

This code calls new on the Class property.

Since the parentheses for the function call are inside the outer set of parentheses, they aren't picked up by the 
new expression, and instead call the function normally, returning its return value.

The new expression parses up to the .Class and instantiates that. (the parentheses after new are optional).

It's equivalent to:

var namespace = { Class: function(){} };
 
function getNamespace(){ return namespace; }
 
new (getNamespace()).Class;
// OR
new namespace.Class;

Without the parentheses around the call to getNamespace(), this would be parsed as (new getNamespace()).Class — it 
would call instantiate the getNamespace class and return the Class property of the new instance.

void Operator
The void operator takes a single operand, evaluates the given expression, and then returns undefined. This is not 
useful, and it is very confusing. Avoid void.

Uses

This operator allows inserting expressions that produce side effects into places where an expression that 
evaluates to undefined is desired.

The void operator is often used merely to obtain the undefined primitive value, usually using "void(0)" (which is 
equivalent to "void 0"). In these cases, the global variable undefined can be used instead (assuming it has not 
been assigned to a non-default value).

JavaScript URIs

When a browser follows a javascript: URI, it evaluates the code in the URI and then replaces the contents of the 
page with the returned value, unless the returned value is undefined. The void operator can be used to return 
undefined. For example:

<a href="javascript:void(0);">Click here to do nothing</a>
<a href="javascript:void(document.body.style.backgroundColor='green');">Click here for green background</a>

Note, however, that the javascript: pseudo protocol is discouraged over other alternatives, such as unobtrusive 
event handlers.



delete operator
The delete operator removes a property from an object.

Syntax

delete expression

where expression should evaluate to a property reference, e.g.:

delete object.property
delete object['property']
delete object[index]
delete property // deletes properties of the global object, or, using the with statement, properties of the referenced object

If expression does not evaluate to a property, delete does nothing.

Parameters

object: The name of an object, or an expression evaluating to an object.
property: The property to delete.
index: An integer representing the array index to delete.

Returns

Returns false only if the property exists on the object itself, regardless of its prototypes, and cannot be 
deleted. It returns true in all other cases.

Description

If the delete operator succeeds, it removes the property from the object entirely. However, if a property with the 
same name exists on the object's prototype chain, the object will inherit that property from the prototype.

delete is only effective on an object's properties. It has no effect on variable or function names.
While sometimes mischaracterized as global variables, assignments that don't specify an object (e.g. x = 5) are 
actually property assignments on the global object.

delete can't remove certain properties of predefined objects (like Object, Array, Math etc). These are marked in 
the ECMA 262 specification as DontDelete.

x = 42;         // creates the property x on the global object
var y = 43;     // declares a new variable, y
myobj = {};
myobj.h = 4;    // creates property h on myobj
myobj.k = 5;    // creates property k on myobj
  
delete x;       // returns true  (x is a property of the global object and can be deleted)
delete y;       // returns false (delete doesn't affect variable names)
delete Math.PI; // returns false (delete doesn't affect certain predefined properties)
delete myobj.h; // returns true  (user-defined properties can be deleted)
  
with (myobj) { 
    delete k;   // returns true  (equivalent to delete myobj.k)
} 
  



delete myobj;   // returns true  (myobj is a property of the global object, not a variable, so it can be deleted).

If the object inherits a property from a prototype, and doesn't have the property itself, the property can't be 
deleted by referencing the object. You can, however, delete it directly on the prototype.

function Foo(){}
Foo.prototype.bar = 42;
var foo = new Foo();
delete foo.bar;           // returns true, but with no effect, since bar is an inherited property
alert(foo.bar);           // alerts 42, property still inherited
delete Foo.prototype.bar; // deletes property on prototype
alert(foo.bar);           // alerts "undefined", property no longer inherited
Deleting array elements

When you delete an array element, the array length is not affected. For example, if you delete a[3], a[4] is still 
a[4] and a[3] is undefined. This holds even if you delete the last element of the array (delete a[a.length-1]).

When the delete operator removes an array element, that element is no longer in the array. In the following 
example, trees[3] is removed with delete.

var trees = ["redwood","bay","cedar","oak","maple"];
  
delete trees[3];
if (3 in trees) {
    // this does not get executed
}

If you want an array element to exist but have an undefined value, use the undefined value instead of the delete 
operator. In the following example, trees[3] is assigned the value undefined, but the array element still exists:

var trees = ["redwood","bay","cedar","oak","maple"];
trees[3] = undefined;
if (3 in trees) {
    // this gets executed
}

Reserved Words
JavaScript has a number of "reserved words," or words that have special meaning in the language. You should avoid 
using these words in your code except when using them with their intended meaning.

abstract
boolean
break
byte
case
catch
char
class
const
continue
debugger



default
delete
do
double
else
enum
export
extends
final
finally
float
for
function
goto
if
implements
import
in
instanceof
int
interface
long
native
new
package
private
protected
public
return
short
static
super
switch
synchronized
this
throw
throws
transient
try
typeof
var
void
volatile
while
with

parseInt function
ECMAScript 5 Removes Octal Interpretation

The ECMAScript 5 specification of the function parseInt no longer allows implementations to treat Strings 
beginning with a 0 character as octal values. ECMAScript 5 states:

The parseInt function produces an integer value dictated by interpretation of the contents of the string argument 
according to the specified radix. Leading white space in string is ignored. If radix is undefined or 0, it is 
assumed to be 10 except when the number begins with the character pairs 0x or 0X, in which case a radix of 16 is 
assumed. If radix is 16, number may also optionally begin with the character pairs 0x or 0X.

This differs from ECMAScript 3 (http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-

http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf


262,%203rd%20edition,%20December%201999.pdf), which discouraged but allowed octal interpretation.

Since many implementations have not adopted this behavior as of 2011, and because older browsers must be 
supported, always specify a radix.

First of all, you really don't need parseInt() in most cases. It's algorithm is full of various quirks, the 0 
prefix is even forbidden by the specification ("the specification of the function parseInt no longer allows 
implementations to treat Strings beginning with a 0 character as octal values."), but it will take a while to 
change browser behaviors (even if I'm sure that nobody does use octals intentionally in parseInt()). And Internet 
Explorer 6 will never change (the Internet Explorer 9 however removed support for octals in parseInt()). The 
algorithm used by it usually does more than you want from it. In certain cases, it's bad idea.

1. First argument is converted to string if it isn't already.
2. Trim the number, so ' 4' becomes '4'.
3. Check if string begins with - or + and remove this character. If it was - make output negative.
4. Convert radix to integer.
5. If radix is 0 or NaN try to guess radix. It means looking (case-insensitive) for 0x and (non-standard) 0. If 
prefix wasn't found, 10 is used (and this is what you most likely what).
6. If radix is 16 strip 0x from the beginning if it exists.
7. Find the first character which is not in range of radix.
8. If there is nothing before first character which wasn't in range of radix, return NaN.
9. Convert number to decimal until the first character which is not in range.

For example, parseInt('012z', 27) gives 0 * Math.pow(27, 2) + 1 * Math.pow(27, 1) + 2 * Math.pow(27, 0).

The algorithm itself is not really quick, but performance varies (optimizations make wonders). I've put test on 
JSPerf and the results are interesting. + and ~~ are fastest with exception for Chrome where parseFloat() is 
somehow way faster than other options (2 to 5 times faster than other options, where + is actually 5 times 
slower). In Firefox, ~~ test is very fast - in certain cases, I've got Infinity cycles.

The other thing is correctness. parseInt(), ~~ and parseFloat() make errors silent. In case of parseInt() and 
parseFloat() characters are ignored after invalid character - you can call it a feature (in most cases it's anti-
feature for me, just like switch statements fallthrough) and if you need it, use one of those. In case of ~~ it 
means returning 0, so be careful.

In certain cases, parseInt() might hurt you. Badly. For example, if number is so big that it is written in 
exponential notation. Use Math methods then.

parseInt(2e30); // will return 2

Anyways, at end I want to make a list when of methods to convert strings to numbers (both integers and floats). 
They have various usages and you may be interested what method to use. In most cases, the simplest one is +number 
method, use it if you can. Whatever you do (except for first method), all should give correct result.

parseInt('08', 10); // 8
+'08';              // 8
~~'08';             // 8
parseFloat('08');   // 8
Number('08');       // 8
new Number('08');   // 8... I meant Object container for 8
Math.ceil('08');    // 8

Don't use parseInt(number). Simple as that. Either use parseInt(number, 10) or this workaround which will 
magically fix parseInt function. Please note that this workaround will not work in JSLint. Please don't complain 
about it.

(function(){
    "use strict";
    var oldParseInt = parseInt;

http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf


    // Don't use function parseInt(){}. It will make local variable.
    parseInt = function(number, radix){
        return oldParseInt(number, radix || 10);
    };
}());
 
parseInt(number, radix);

parseInt converts argument to numbers using mentioned above algorithm. Avoid using it on large integers as it can 
do incorrect results in cases like parseInt(2e30). Also, never ever give it as argument to Array.prototype.map or 
Underscore.js variation of it as you may get weird results (try ['1', '2', '3'].map(parseInt) if you want (for 
explanation, replace parseInt with console.log)).

Use it when either:

When you need to read data written in different radix.
You need to ignore errors (for example change 123px to 123)
Otherwise use other more safe methods (if you need integer, use Math.floor instead).

+number

+ prefix (+number) converts number to float. In case of error it returns NaN which you can compare by either 
isNaN() or just by number !== number (it should return true only for NaN). It's very fast in Opera.

Use it unless you want specific features of other types.

~~number

~~ is a hack which uses ~ two times on the integer. As ~ bitwise operation can be only done for integers, the 
number is automatically converted. Most browsers have optimizations for this case. As bitwise operations only work 
below Math.pow(2, 32) never use this method with big numbers. It's blazingly fast on SpiderMonkey engine.

Use it when either:

You're writing code where performance is important for SpiderMonkey (like FireFox plugins) and you don't need 
error detection.

You need integer and care resulting JavaScript size.

parseFloat(number)

parseFloat() works like + with the one exception - it processes number until first invalid character instead of 
returning NaN. It's very fast (but not as fast as ~~ on Firefox) in V8. Unlike parseInt variation, it should be 
safe with Array.prototype.map.

Use it when either:

You're writing performance-critical code for Node.js or you're writing Google Chrome plugins (V8).

You need to ignore errors (for example change 42.13px to 42.13)

Number(number)

Avoid it. It works just like + prefix and is usually slower. The only usage where it could be useful is callback 
for Array.prototype.map - you cannot use + as callback.

new Number(number)

Use it when you need to confuse everybody with 0 being truthy value and having typeof of 'number'. Seriously, 
don't.



Math methods, like Math.ceil(number)

Use them when you need integer as it's more safe than parseInt() by not ignoring unexpected characters. Please 
note that technically it involves long conversion - string ? float ? integer ? float (numbers in JavaScript are 
floats) - but most browser have optimizations for it, so usually it's not that noticeable. It's also safe with 
Array.prototype.map.

Declarations, Names, and Hoisting
In JavaScript, a name enters a scope in one of four basic ways:

1. Language-defined: All scopes are, by default, given the names this and arguments.
2. Formal parameters: Functions can have named formal parameters, which are scoped to the body of that function.
3. Function declarations: These are of the form function foo(){}.
4. Variable declarations: These take the form var foo;.

Function declarations and variable declarations are always moved ("hoisted") invisibly to the top of their 
containing scope by the JavaScript interpreter. Function parameters and language-defined names are, obviously, 
already there. This means that code like this:

function foo(){
    bar();
    var x = 1;
}

is actually interpreted like this:

function foo(){
    var x;
    bar();
    x = 1;
}

It turns out that it doesn't matter whether the line that contains the declaration would ever be executed. The 
following two functions are equivalent:

function foo(){
    if (false) {
        var x = 1;
    }
    return;
    var y = 1;
}
 
function foo(){
    var x, y;
    if (false) {
        x = 1;
    }
    return;
    y = 1;
}



Notice that the assignment portion of the declarations were not hoisted. Only the name is hoisted. This is not the 
case with function declarations, where the entire function body will be hoisted as well. But remember that there 
are two normal ways to declare functions. Consider the following JavaScript:

function test(){
    foo(); // TypeError "foo is not a function"
    bar(); // "this will run!"
    var foo = function(){ // function expression assigned to local variable 'foo'
        alert("this won't run!");
    };
    function bar(){ // function declaration, given the name 'bar'
        alert("this will run!");
    }
}
test();

In this case, only the function declaration has its body hoisted to the top. The name 'foo' is hoisted, but the 
body is left behind, to be assigned during execution.

That covers the basics of hoisting, which is not as complex or confusing as it seems. Of course, this being 
JavaScript, there is a little more complexity in certain special cases.

Name Resolution Order

The most important special case to keep in mind is name resolution order. Remember that there are four ways for 
names to enter a given scope. The order I listed them above is the order they are resolved in. In general, if a 
name has already been defined, it is never overridden by another property of the same name. This means that a 
function declaration takes priority over a variable declaration. This does not mean that an assignment to that 
name will not work, just that the declaration portion will be ignored. There are a few exceptions:

- The built-in name arguments behaves oddly. It seems to be declared following the formal parameters, but before 
function declarations. This means that a formal parameter with the name arguments will take precedence over the 
built-in, even if it is undefined. This is a bad feature. Don't use the name arguments as a formal parameter.
- Trying to use the name this as an identifier anywhere will cause a SyntaxError. This is a good feature.
- If multiple formal parameters have the same name, the one occurring latest in the list will take precedence, 
even if it is undefined.

Named Function Expressions

You can give names to functions defined in function expressions, with syntax like a function declaration. This 
does not make it a function declaration, and the name is not brought into scope, nor is the body hoisted. Here's 
some code to illustrate what I mean:

foo(); // TypeError "foo is not a function"
bar(); // valid
baz(); // TypeError "baz is not a function"
spam(); // ReferenceError "spam is not defined"
 
var foo = function(){}; // anonymous function expression ('foo' gets hoisted)
function bar(){}; // function declaration ('bar' and the function body get hoisted)
var baz = function spam(){}; // named function expression (only 'baz' gets hoisted)
 
foo(); // valid
bar(); // valid
baz(); // valid
spam(); // ReferenceError "spam is not defined"



How to Code With This Knowledge

Now that you understand scoping and hoisting, what does that mean for coding in JavaScript? The most important 
thing is to always declare your variables with a var statement. I strongly recommend that you have exactly one var 
statement per scope, and that it be at the top. If you force yourself to do this, you will never have hoisting-
related confusion. However, doing this can make it hard to keep track of which variables have actually been 
declared in the current scope. I recommend using JSLint with the onevar option to enforce this. If you've done all 
of this, your code should look something like this:

/*jslint onevar: true [...] */
function foo(a, b, c){
    var x = 1,
        bar,
        baz = "something";
}

What the Standard Says

I find that it's often useful to just consult the ECMAScript Standard (http://www.ecma-international.org/ecma-
262/5.1/) (pdf (http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf)) directly to understand 
how these things work. Here's what it has to say about variable declarations and scope (section 12.2.2):

If the variable statement occurs inside a FunctionDeclaration, the variables are defined with function-local scope 
in that function, as described in section 10.1.3. Otherwise, they are defined with global scope (that is, they are 
created as members of the global object, as described in section 10.1.3) using property attributes { DontDelete }. 
Variables are created when the execution scope is entered. A Block does not define a new execution scope. Only 
Program and FunctionDeclaration produce a new scope. Variables are initialized to undefined when created. A 
variable with an Initializer is assigned the value of its AssignmentExpression when the VariableStatement is 
executed, not when the variable is created.

JavaScript Datatypes
Primitive Types:
String, Number, Boolean, Null, Undefined

Object Types:
Array, Function, Object, Date, Error, RegExp

Chaining Methods
In the world of OOP, the previous ways of defining an object is too limiting in many situations. We need a way to 
create an object "type" that can be used multiple times without having to redefine the object every time to meet 
each particular instance's needs. The standard way to achieve this is to use the Object Constructor function.

An object constructor is merely a regular JavaScript function, so it's just as robust (ie: define parameters, call 
other functions etc). The difference between the two is that a constructor function is called via the new operator 
(which you'll see below). By basing our object definition on the function syntax, we get its robustness as well.

Lets use a real world item "cat" as an example. A property of a cat may be its color or name. A method may be to 
"meeyow". The important thing to realize, however is that every cat will have a different name or even meeyow 
noise. To create an object type that accommodates this need for flexibility, we'll use an object constructor.

Here the function "Cat" is an object constructor, and its properties and methods are declared inside it by 

http://www.ecma-international.org/ecma-262/5.1/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf


prefixing them with the keyword "this." Objects defined using an object constructor are then instantiated using 
the new keyword. Notice how we're able to easily define multiple instances of cat, each with its own name- that's 
the flexibility object constructor brings to custom objects. Constructors create the blueprints for objects, not 
the object itself.

Object Constructors are capitalized by convention. A constructor name should begin with an uppercase letter.

function Cat(name){
    this.name = name;
    this.talk = function(){
        log(this.name + " say meeow!");
    };
} 
 
cat1 = new Cat("felix");
cat1.talk(); // "felix says meeow!"
 
cat2 = new Cat("ginger");
cat2.talk(); // "ginger says meeow!"
 
Cat.prototype.changeName = function(name){
    this.name = name;
};
 
firstCat = new Cat("pursur");
firstCat.changeName("bill");
firstCat.talk(); // "bill says meeow!"
 
// What we want to do (chaining) methods:
new Cat("kitty").changeName("hal buttar").talk();
// Uncaught TypeError: Cannot call method 'talk' of undefined.
// Remember, all functions return "undefined" if you don't specify what should be returned.

cat1 -> Array
(
    [name] => felix
    [talk] => function (){
  log(this.name + " say meeow!");
 }
    [changeName] => function (name){
 this.name = name;
}
)

cat2 -> Array
(
    [name] => ginger
    [talk] => function (){
  log(this.name + " say meeow!");
 }
    [changeName] => function (name){
 this.name = name;
}
)

firstCat -> Array
(
    [name] => bill
    [talk] => function (){



  log(this.name + " say meeow!");
 }
    [changeName] => function (name){
 this.name = name;
}
)

log -> Array
(
    [0] => felix say meeow!
    [1] => ginger say meeow!
    [2] => bill say meeow!
)

We saw above how to add a method to our constructor function by merely declaring it inside the function. Another 
approach is through prototyping, which is also more popular due to its elegance. Prototype is a type of 
inheritance in JavaScript. We use it when we would like an object to inherit a method after it has been defined. 
Think of prototyping mentally as "attaching" a method to an object after it's been defined, in which all object 
instances then instantly share.

As you can see we merely use the keyword "prototype" immediately following the object's name to utilize this 
functionality. The custom method changeName() is now shared by all instances of cat.

Prototyping works on both custom objects and select prebuilt objects, such as Date() or String. For the later, the 
general rule is that you can prototype any prebuilt object that's initialized with the "new" keyword. 

Right now we can't chain the methods together but we can easily fix this by returning this inside the cat object's 
methods.

function Cat(name){
    this.name = name;
    this.talk = function(){
        log(this.name + " say meeow!");
        return this;
    };
} 
 
Cat.prototype.changeName = function(name){
    this.name = name;
    return this;
};
 
cat1 = new Cat("felix");
cat1.talk().talk().changeName("newFelix").talk();
 
cat2 = new Cat("ginger");
cat2.talk().talk().changeName("newGinger").talk();
 
firstCat = new Cat("pursur");
firstCat.changeName("newPursur").talk();
 
new Cat("hal buttar").talk().changeName("new hal buttar").talk().talk();
new Cat().talk().changeName("anonymous").talk();

cat1 -> Array
(
    [name] => newFelix



    [talk] => function (){
  log(this.name + " say meeow!");
  return this;
 }
    [changeName] => function (name){
 this.name = name;
 return this;
}
)

cat2 -> Array
(
    [name] => newGinger
    [talk] => function (){
  log(this.name + " say meeow!");
  return this;
 }
    [changeName] => function (name){
 this.name = name;
 return this;
}
)

firstCat -> Array
(
    [name] => newPursur
    [talk] => function (){
  log(this.name + " say meeow!");
  return this;
 }
    [changeName] => function (name){
 this.name = name;
 return this;
}
)

log -> Array
(
    [0] => felix say meeow!
    [1] => felix say meeow!
    [2] => newFelix say meeow!
    [3] => ginger say meeow!
    [4] => ginger say meeow!
    [5] => newGinger say meeow!
    [6] => newPursur say meeow!
    [7] => hal buttar say meeow!
    [8] => new hal buttar say meeow!
    [9] => new hal buttar say meeow!
    [10] => undefined say meeow!
    [11] => anonymous say meeow!
)

Saving State
You can save state by using window.location.hash or window.location.search as they both are in the url.

Changing location.search forces a page refresh which is most likely undesirable. Updating location.hash doesn't 
reload the page.



Creating shortcuts
bind() is helpful in cases where you want to create a shortcut to a function which requires a specific this value.

Take Array.prototype.slice, for example, which you want to use for converting an array-like object to a real 
array. You could create a shortcut like this:

var slice = Array.prototype.slice;
slice.call(arguments);

With bind(), this can be simplified. In the following piece of code, slice is a bound function to the call() 
(https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Function/call) function of 
Function.prototype, with the this value set to the slice() function of Array.prototype. This means that additional 
call() calls can be eliminated:

var unboundSlice = Array.prototype.slice; // same as "slice" in the previous example
var slice = Function.prototype.call.bind(unboundSlice);
 
slice(arguments);

Statements and Expressions
All the JavaScript code that you will write will, for the most part, be comprised of many separate statements. A 
statement can set a variable equal to a value. A statement can also be a function call, i.e. document.write(). 
Statements define what the script will do and how it will be done.

In typical programming languages like C and PHP, the end of a statement is marked with a semicolon(;), but we have 
seen that the semicolon is optional in JavaScript. In JavaScript, the end of a statement is most often marked by 
pressing return and starting a new line. If you are an experienced programmer and prefer to use semicolons, feel 
free to do so. JavaScript will not malfunction from ending semicolons. The only time it is necessary to use a 
semicolon is when you choose to smash two statements onto one line (i.e. two document.write statements on one 
line).

In addition to standard statements like changing a variable's value, assigning a new value, or calling a function, 
there are groups of statements that are distinct in their purpose. These distinct groups of statements include:

- Conditional Statements
- Loop Statements
- Object Manipulation Statements
- Comment Statements
- Exception Handling Statements

The function Statement Versus the function Expression

JavaScript has a function statement as well as a function expression. This is confusing because they can look 
exactly the same. A function statement is shorthand for a var statement with a function value.

The statement:

function foo(){}
// means about the same thing as:
var foo = function foo(){};

The second form makes it clear that foo is a variable containing a function value. To use the language well, it is 
important to understand that functions are values.

https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Function/call


function statements are subject to hoisting. This means that regardless of where a function is placed, it is moved 
to the top of the scope in which it is defined. This relaxes the requirement that functions should be declared 
before used, which I think leads to sloppiness. It also prohibits the use of function statements in if statements. 
It turns out that most browsers allow function statements in if statements, but they vary in how that should be 
interpreted. That creates portability problems.

The first thing in a statement cannot be a function expression because the official grammar assumes that a 
statement that starts with the word function is a function statement. The workaround is to wrap the function 
expression in parentheses:

(function(){
    var hidden_variable;
    // This function can have some impact on the environment, but introduces no new global variables.
})();

ECMAScript 5 Strict Mode
Strict Mode is a new feature in ECMAScript 5 that allows you to place a program, or a function, in a "strict" 
operating context. This strict context prevents certain actions from being taken and throws more exceptions 
(generally providing the user with more information and a tapered-down coding experience).

Since ECMAScript 5 is backwards-compatible with ECMAScript 3, all of the "features" that were in ECMAScript 3 that 
were "deprecated" are just disabled (or throw errors) in strict mode, instead.

Strict mode helps out in a couple ways:

- It catches some common coding bloopers, throwing exceptions.
- It prevents, or throws errors, when relatively "unsafe" actions are taken (such as gaining access to the global 
object).
- It disables features that are confusing or poorly thought out.

It should be noted that ECMAScript 5's strict mode is different from the strict mode available in Firefox (which 
can be turned on by going to about:config and enabled javascript.options.strict). ES5's strict mode complains 
about a completely different set of potential errors (whereas Firefox's existing strict mode tries to enforce some 
good practices, only).

How do you enable strict mode?

// Simple. Toss this at the top of a program to enable it for the whole script:
"use strict";
 
// Or place it within a function to turn on strict mode only within that context.
function imStrict(){
    "use strict";
    // ... your code ...
}

Note the syntax that's used to enable strict mode (I love this!). It's simply a string in a single statement that 
happens to contain the contents "use strict". No new syntax is introduced in order to enable strict mode. This is 
huge. This means that you can turn strict mode on in your scripts - today - and it'll have, at worst, no side 
effect in old browsers.

As you may note from the examples here and in the previous post there are virtually no new syntax additions or 
changes to the language in ECMAScript 5. This means that you can write your ES5 scripts in a manner that will be 
able to gracefully degrade for older useragents - something that wasn't possible with ECMAScript 4. The way in 
which strict mode is enabled is a great illustration of that point in practice.



A neat aspect of being able to define strict mode within a function is that you can now define complete JavaScript 
libraries in a strict manner without affecting outside code.

// Non-strict code...
 
(function(){
    "use strict";
 
    // Define your library strictly...
})();
 
// Non-strict code...

A number of libraries already use the above technique (wrapping the whole library with an anonymous self-executing 
function) and they will be able to take advantage of strict mode very easily.

So what changes when you put a script into strict mode? A number of things.

Variables and Properties

An attempt to assign foo = "bar"; where 'foo' hasn't been defined will fail. Previously it would assign the value 
to the foo property of the global object (e.g. window.foo), now it just throws an exception. This is definitely 
going to catch some annoying bugs.

Any attempts to write to a property whose writable attribute is set to false, delete a property whose configurable 
attribute is set to false, or add a property to an object whose extensible attribute is set to false will result 
in an error (these attributes were discussed previously). Traditionally no error will be thrown when any of these 
actions are attempted, it will just fail silently.

Deleting a variable, a function, or an argument will result in an error.

var foo = "test";
function test(){}
delete foo; // Error
delete test; // Error
 
function test2(arg){
    delete arg; // Error
}

Defining a property more than once in an object literal will cause an exception to be thrown.

// Error
{ foo: true, foo: false }

eval

Virtually any attempt to use the name 'eval' is prohibited - as is the ability to assign the eval function to a 
variable or a property of an object.

// All generate errors...
obj.eval = ...
obj.foo = eval;



var eval = ...;
for (var eval in ...) {}
function eval(){}
function test(eval){}
function(eval){}
new Function("eval")

Additionally, attempts to introduce new variables through an eval will be blocked.

eval("var a = false;");
console.log(typeof a); // undefined

Functions

Attempting to overwrite the arguments object will result in an error:
arguments = [...]; // not allowed

Defining identically-named arguments will result in an error function(foo, foo){}.

Access to arguments.caller and arguments.callee now throw an exception. Thus any anonymous functions that you want 
to reference will need to be named, like so:

setTimeout(function later(){
    // do stuff...
    setTimeout(later, 1000);
}, 1000);

The arguments and caller properties of other functions no longer exist - and the ability to define them is 
prohibited.

function test(){
    function inner(){
        // Don't exist, either
        test.arguments = ...; // Error
        inner.caller = ...; // Error
    }
}

Finally, a long-standing (and very annoying) bug has been resolved: Cases where null or undefined is coerced into 
becoming the global object. Strict mode now prevents this from happening and throws an exception instead.

(function(){ ... }).call(null); // Exception

with () {}

with () {} statements are dead when strict mode is enabled - in fact it even appears as a syntax error. While the 
feature was certainly mis-understood and possibly mis-used I'm not convinced that it's enough to be stricken from 
the record.

The changes made in ECMAScript 5 strict mode are certainly varied (ranging from imposing stylistic preferences, 
like removing with statements, to fixing legitimately bad language bugs, like the ability to redefine properties 
in object literals). It'll be interesting to see how people begin to adopt these points and how it'll change 



JavaScript development.

ECMAScript 6 (Harmony)
Version 6 is rumored to have support for classes, a concept long supported by languages like Java, C++ and C#, in 
addition to multiple new concepts and language features.

In the July 2008 announcement, Eich also stated that the ECMAScript 4 proposal would be superseded by a new 
project, code-named ECMAScript Harmony. ECMAScript Harmony (http://people.mozilla.org/~jorendorff/es6-draft.html) 
names the agreed design trajectory of post-ES5 editions. It will include syntactic extensions, but the changes 
will be more modest than ECMAScript 4 in both semantic and syntactic innovation. Packages, namespaces, and early 
binding from ECMAScript 4 are no longer included for planned releases. In addition, other goals and ideas from 
ECMAScript 4 are being rephrased to keep consensus in the committee; these include a notion of classes based on 
ECMAScript, 5th Edition (being an update to ECMAScript, 3rd edition). As of December 2009, there is no publicly 
announced release date for next edition within the ECMAScript Harmony trajectory. Depending on ECMA, that next 
edition may end up being called ECMAScript, 6th edition.

Object.create(proto [, propertiesObject ])
Objects can also be created using the Object.create method. This method can be very useful, because it allows you 
to choose the prototype object for the object you want to create, without having to define a constructor function.

// create an object with null as prototype
o = Object.create(null);
 
o = {};
// is equivalent to
o = Object.create(Object.prototype);
 
// Example where we create an object with a couple of sample properties.
// (Note that the second parameter maps keys to *property descriptors*.)
o = Object.create(Object.prototype, {
    // foo is a regular "value property"
    foo: { writable: true, configurable: true, value: "hello" },
    // bar is a getter-and-setter (accessor) property
    bar: {
        configurable: false,
        get: function(){ return 10 },
        set: function(value){ console.log("Setting ̀o.bar̀ to", value) }
    }
});
 
function Constructor(){}
o = new Constructor();
// is equivalent to
o = Object.create(Constructor.prototype);
// Of course, if there is actual initialization code in the Constructor function, the Object.create cannot reflect it
 
// create a new object whose prototype is a new, empty object
// and a adding single property 'p', with value 42
o = Object.create({}, { p: { value: 42 } });
  
// by default properties ARE NOT writable, enumerable, or configurable

http://people.mozilla.org/~jorendorff/es6-draft.html


o.p = 24;
o.p // 42
  
o.q = 12;
for (var prop in o) {}
    console.log(prop)
}
// "q"
  
delete o.p // false
  
// to specify an ES3 property
o2 = Object.create({}, { p: { value: 42, writable: true, enumerable: true, configurable: true } });

There are 2 kinds of properties: Data properties and Accessor properties. The difference between the 2 is that 
accessor ones have get and set attributes. Looking into a property, we can define it as a named collection of 
attributes. Every property has a value which is the value that you assign from it, that you get back from it, and 
it has three Boolean flags: writable, enumerable, and configurable, which control whether the thing is read-only 
or if it's enumerated by for in, or if you can delete it or change it. These flags are there in the language but 
never exposed to the programmer. This was fixed in ES5 and this is how you can use them:

Object.defineProperty(object, key, descriptor)
Object.defineProperties(object, object_of_descriptors)
Object.getOwnPropertyDescriptor(object, key)
Object.getOwnProperties(object)
Object.keys(object)

A usage example: In ES3, we use object literals that looks like:

var obj = { foo: bar };

Notice that creating an object this way, strips the developer from any control over the created object. This has 
changed in ES5, where we can set those control flags mentioned earlier by doing:

var myObj = Object.defineProperties(Object.create(Object.prototype), {
    foo: {
        value: bar,
        writable: true,
        enumerable: true,
        configurable: true
    }
});

ES5 has also provided: Accessor properties get and set that can be used like:

Object.defineProperty(obj, 'name', {
    get: function(){ return this.firstName + " " + this.lastName },
    set: function(value){ this.firstName = value.split(' ')[0]; this.lastName = value.split(' ')[1] },
    enumerable: true
});



Bitwise Operators
This is a little bit of a tangent; however, I think it's important not to get thrown off when we see code that 
uses bitwise operators. Bitwise operators are good for saving space -- but many times, space is hardly an issue.

Another example comes up when dealing with data compression: what if you wanted to compress a file? In principle, 
this means taking one representation and turning it into a representation that takes less space. One way of doing 
this is to use an encoding that takes less than 8 bits to store a byte. (For instance, if you knew that you would 
only be using the 26 letters of the Roman alphabet and didn't care about capitalization, you'd only need 5 bits to 
do it.) In order to encode and decode files compressed in this manner, you need to actually extract data at the 
bit level. Finally, you can use bit operations to speed up your program or perform neat tricks. (This isn't always 
the best thing to do.)

Thinking about Bits

The byte is the lowest level at which we can access data; there's no "bit" type, and we can't ask for an 
individual bit. In fact, we can't even perform operations on a single bit -- every bitwise operator will be 
applied to, at a minimum, an entire byte at a time. This means we'll be considering the whole representation of a 
number whenever we talk about applying a bitwise operator. (Note that this doesn't mean we can't ever change only 
one bit at a time; it just means we have to be smart about how we do it.) Understanding what it means to apply a 
bitwise operator to an entire string of bits is probably easiest to see with the shifting operators. By 
convention, in C and C++ you can think about binary numbers as starting with the most significant bit to the left 
(i.e., 10000000 is 128, and 00000001 is 1). Regardless of underlying representation, you may treat this as true. 
As a consequence, the results of the left and right shift operators are not implementation dependent for unsigned 
numbers (for signed numbers, the right shift operator is implementation defined).

The leftshift operator is the equivalent of moving all the bits of a number a specified number of places to the 
left:

[variable]<<[number of places]

For instance, consider the number 8 written in binary 00001000. If we wanted to shift it to the left 2 places, 
we'd end up with 00100000; everything is moved to the left two places, and zeros are added as padding. This is the 
number 32 -- in fact, left shifting is the equivalent of multiplying by a power of two.

function mult_by_pow_2(number, power){
    return number<<power;
}

Note that in this example, we're using integers, which are either 2 or 4 bytes, and that the operation gets 
applied to the entire sequence of 16 or 32 bits.

But what happens if we shift a number like 128 and we're only storing it in a single byte: 10000000? Well, 128 * 2 
= 256, and we can't even store a number that big in a byte, so it shouldn't be surprising that the result is 
00000000.

It shouldn't surprise you that there's a corresponding right-shift operator: >> (especially considering that I 
mentioned it earlier). Note that a bitwise right-shift will be the equivalent of integer division by 2.

Why is it integer division? Consider the number 5, in binary, 00000101. 5/2 is 2.5, but if you are performing 
integer division, 5/2 is 2. When you perform a right shift by one: (unsigned int) 5 >> 1, you end up with 
00000010, as the rightmost 1 gets shifted off the end; this is the representation of the number 2. Note that this 
only holds true for unsigned integers; otherwise, we are not guaranteed that the padding bits will be all 0s.

Generally, using the left and right shift operators will result in significantly faster code than calculating and 
then multiplying by a power of two. The shift operators are also be useful for manipulating individual bits.



A bitwise operation operates on one or more bit patterns or binary numerals at the level of their individual bits. 
It is a fast, primitive action directly supported by the processor, and is used to manipulate values for 
comparisons and calculations. On simple low-cost processors, typically, bitwise operations are substantially 
faster than division, several times faster than multiplication, and sometimes significantly faster than addition. 
While modern processors usually perform addition and multiplication just as fast as bitwise operations due to 
their longer instruction pipelines and other architectural design choices, bitwise operations do commonly use less 
power/performance because of the reduced use of resources.

The bitwise operators operate on numbers (always integers) as if they were sequences of binary bits (which, of 
course, internally to the computer they are). These operators will make the most sense, therefore, if we consider 
integers as represented in binary, octal, or hexadecimal (bases 2, 8, or 16), not decimal (base 10). Remember, you 
can use octal constants by prefixing them with an extra 0 (zero), and you can use hexadecimal constants by 
prefixing them with 0x (or 0X).

The & operator performs a bitwise AND on two integers. Each bit in the result is 1 only if both corresponding bits 
in the two input operands are 1. For example, 0x56 & 0x32 is 0x12, because (in binary):

   0 1 0 1 0 1 1 0
 & 0 0 1 1 0 0 1 0
   ---------------
   0 0 0 1 0 0 1 0

The | (vertical bar / pipe) operator performs a bitwise OR on two integers. Each bit in the result is 1 if either 
of the corresponding bits in the two input operands is 1. For example, 0x56 | 0x32 is 0x76, because:

   0 1 0 1 0 1 1 0
 | 0 0 1 1 0 0 1 0
   ---------------
   0 1 1 1 0 1 1 0

The ̂ (caret) operator performs a bitwise exclusive-OR on two integers. Each bit in the result is 1 if one, but 
not both, of the corresponding bits in the two input operands is 1. For example, 0x56 ̂ 0x32 is 0x64:

   0 1 0 1 0 1 1 0
  ̂0 0 1 1 0 0 1 0
   ---------------
   0 1 1 0 0 1 0 0

The ~ (tilde) operator performs a bitwise complement on its single integer operand. (The ~ operator is therefore a 
unary operator, like ! and the unary -, &, and * operators.) Complementing a number means to change all the 0 bits 
to 1 and all the 1s to 0s. For example, assuming 16-bit integers, ~0x56 is 0xffa9:

 ~ 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0
   -------------------------------
   1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1

The << operator shifts its first operand left by a number of bits given by its second operand, filling in new 0 
bits at the right. Similarly, the >> operator shifts its first operand right. If the first operand is unsigned, >> 
fills in 0 bits from the left, but if the first operand is signed, >> might fill in 1 bits if the high-order bit 
was already 1. (Uncertainty like this is one reason why it's usually a good idea to use all unsigned operands when 
working with the bitwise operators.) For example, 0x56 << 2 is 0x158:

    0 1 0 1 0 1 1 0 << 2
   -------------------
   0 1 0 1 0 1 1 0 0 0

And 0x56 >> 1 is 0x2b:

   0 1 0 1 0 1 1 0 >> 1
   ---------------
  0 1 0 1 0 1 1



For both of the shift operators, bits that scroll "off the end'' are discarded; they don't wrap around. 
(Therefore, 0x56 >> 3 is 0x0a.)

The bitwise operators will make more sense if we take a look at some of the ways they're typically used. We can 
use & to test if a certain bit is 1 or not. For example, 0x56 & 0x40 is 0x40, but 0x32 & 0x40 is 0x00:

   0 1 0 1 0 1 1 0   0 0 1 1 0 0 1 0
 & 0 1 0 0 0 0 0 0 & 0 1 0 0 0 0 0 0
   ---------------   ---------------
   0 1 0 0 0 0 0 0   0 0 0 0 0 0 0 0

Because of the nature of base-2 arithmetic, it turns out that shifting left and shifting right are equivalent to 
multiplying and dividing by two. These operations are equivalent for the same reason that tacking zeroes on to the 
right of a number in base 10 is the same as multiplying by 10, and deleting digits from the right is the same as 
dividing by 10. You can convince yourself that 0x56 << 2 is the same as 0x56 * 4, and that 0x56 >> 1 is the same 
as 0x56 / 2. It's also the case that masking off all but the low-order bits is the same as taking a remainder; for 
example, 0x56 & 0x07 is the same as 0x56 % 8. Some programmers therefore use <<, >>, and & in preference to *, /, 
and % when powers of two are involved, on the grounds that the bitwise operators are "more efficient." Usually it 
isn't worth worrying about this, though, because most compilers are smart enough to perform these optimizations 
anyway (that is, if you write x * 4, the compiler might generate a left shift instruction all by itself), they're 
not always as readable, and they're not always correct for negative numbers.

The issue of negative numbers, by the way, explains why the right-shift operator >> is not precisely defined when 
the high-order bit of the value being shifted is 1. For signed values, if the high-order bit is a 1, the number is 
negative. (This is true for 1's complement, 2's complement, and sign-magnitude representations.) If you were using 
a right shift to implement division, you'd want a negative number to stay negative, so on some computers, under 
some compilers, when you shift a signed value right and the high-order bit is 1, new 1 bits are shifted in at the 
left instead of 0s. However, you can't depend on this, because not all computers and compilers implement right 
shift this way. In any case, shifting negative numbers to the right (even if the high-order 1 bit propagates) 
gives you an incorrect answer if there's a remainder involved: in 2's complement, 16-bit arithmetic, -15 is 
0xfff1, so -15 >> 1 might give you 0xfff8 shifted which is -8. But integer division is supposed to discard the 
remainder, so -15 / 2 would have given you -7. (If you're having trouble seeing the way the shift worked, 0xfff1 
is 1111111111110001 and 0xfff8 is 1111111111111000. The low-order 1 bit got shifted off to the right, but because 
the high-order bit was 1, a 1 got shifted in at the left.)

You know a couple of neat tricks that you can use when performance is critical, or space is slow, or you just need 
to isolate and manipulate individual bits of a number. You now should have a better sense of what goes on at the 
lowest levels of your computer.

One final neat trick of bitwise operators is that you can use them, in conjunction with a bit of math, to find out 
whether an integer is a power of two.

A power of two will look like this in memory:

01000000

a string of zeros, with a lone one. Now, if you subtract 1 from a power of two, you'll get, with all numbers in 
binary:

01000000 - 00000001 = 00111111

a string of ones!

If you take the bitwise AND of the two values, you get 0:

01000000 & 00111111 = 00000000

On the other hand, if you don't have a power of two, you'll have at least one additional 1:

01000001

When you subtract 1, you'll still have at least one "on" bit (with a value of 1) in the same position as before, 

2 2



so taking the bitwise AND of the two numbers will not result in a string of 0s:

01000001 - 00000001 = 01000000
01000000 & 01000001 = 01000000

So to tell if an integer is a power of two:

function is_power(x){
    return !((x-1) & x);
}

Math.round ~~ hack

Math.round() has a function call overhead, so using the ~~ hack (truncate towards 0) and adding 0.5 works quicker, 
but if you want to handle negative numbers too then you have to check whether to add or subtract 0.5 .... and this 
wipes out the speed advantage. So ~~(0.5+num) is only worth it if you know your numbers always have the same 
sign...

Here is the jsperf test of these methods.
http://jsperf.com/math-round-vs-hack (http://jsperf.com/math-round-vs-hack)
http://jsperf.com/bit-vs-comparison-operator (http://jsperf.com/bit-vs-comparison-operator)

var somenum = -500 + (Math.random() * 1000), rounded;
 
// "proper" rounding
rounded = Math.round(somenum);
 
// Hack rounding
rounded = ~~ (0.5 + somenum);
 
// Proper hack rounding
rounded = ~~ (somenum + (somenum > 0 ? .5 : -.5));

rounded -> Array
(
    [Math.round(somenum)] => -351
    [~~ (0.5 + somenum)] => -350
    [~~ (somenum + (somenum > 0 ? .5 : -.5))] => -351
)

jQuery

What is jQuery?

jQuery is a fast, small, concise, and feature-rich lightweight JavaScript Library created by John Resig in 2006 
with a nice motto: write less, do more. jQuery simplifies HTML document traversing and manipulation, event 
handling, animating, and Ajax interactions much simpler with an easy-to-use API that works across a multitude of 
browsers for rapid web development. With a combination of versatility and extensibility, jQuery has changed the 
way that millions of people write JavaScript.

http://jsperf.com/math-round-vs-hack
http://jsperf.com/bit-vs-comparison-operator


jQuery is a JavaScript toolkit designed to simplify various tasks by writing less code. Here is the list of 
important core features supported by jQuery:
- DOM Manipulation: The jQuery made it easy to select DOM elements, traverse them and modifying their content by 
using cross-browser open source selector engine called Sizzle.
- Event Handling: The jQuery offers an elegant way to capture a wide variety of events, such as a user clicking on 
a link, without the need to clutter the HTML code itself with event handlers.
- AJAX Support: The jQuery helps you a lot to develop a responsive and feature-rich site using AJAX technology.
- Animations: The jQuery comes with plenty of built-in animation effects which you can use in your websites.
- Lightweight: The jQuery is very lightweight library - about 19KB in size ( Minified and gzipped ).
- Cross Browser Support: The jQuery has cross-browser support, and works well in IE 6.0+, FF 2.0+, Safari 3.0+, 
Chrome and Opera 9.0+
- Latest Technology: The jQuery supports CSS3 selectors and basic XPath syntax.

// Typically how you will typically call a function using jQuery.
$(document).ready(function(){});
 
// Doing the following will not invoke mymethod as a method but as a function.
// Because the callback is inside jQuery the function is bound to the document hence $(document) and that's what this refers to. If it 
wasn't jQuery the method would bound to the global window object (context) which means the variable this would be window.
$(document).ready(myobject.mymethod);
 
// Don't do this because it defeats the purpose of using jQuery's ready method because mymethod is invoked before the document is 
ready.
$(document).ready(myobject.mymethod());
 
// Invoke methods from inside the anonymous function because they typically reference object variables using the variable this.
$(document).ready(function(){myobject.mymethod()});
 
// This can also be solved by defining a bind method like this:
 
function bind(fnThis, fn){
    var args = Array.prototype.slice.call(arguments, 2);
    return function(){
        if (0 < args.length) arguments = args;
        return fn.apply(fnThis, arguments);
    };
}
 
$(document).ready(bind(myobject, myobject.mymethod));
 
// Sample Code Demonstrating This Behavior
 
var scope = "Global Scope";
var myobject = {
    scope: "Local Scope",
    mymethod: function(){
        alert(this.scope);
    }
};
 
// Undefined (there isn't a scope property in the document object)
$(document).ready(myobject.mymethod);
 
// Global Scope
$(document).ready(myobject.mymethod.bind(window));
$(document).ready($.proxy(myobject.mymethod, window));
 
// Local Scope
$(document).ready(function(){myobject.mymethod()});
$(document).ready(myobject.mymethod.bind(myobject));



$(document).ready(bind(myobject, myobject.mymethod));
$(document).ready($.proxy(myobject, "mymethod"));
$(document).ready($.proxy(myobject.mymethod, myobject));

$.noConflict()

When you put jQuery into no-conflict mode, you have the option of assigning a variable name to replace $.

You can continue to use the standard $ by wrapping your code in a self-executing anonymous function; this is a 
standard pattern for plugin authoring, where the author cannot know whether another library will have taken over 
the $.

However, the handler passed to the .ready() method can take an argument, which is passed the global jQuery object.

var $j = jQuery.noConflict();
 
// OR
 
(function($){
    // your code here, using the $
})(jQuery);
 
// OR
 
jQuery(document).ready(function($){
    // code using $ as usual goes here.
});

Detach Elements to Work With Them

The DOM is slow; you want to avoid manipulating it as much as possible. jQuery introduced $.fn.detach in version 
1.4 to help address this issue, allowing you to remove an element from the DOM while you work with it.

var $table = $('#myTable');
var $parent = $table.parent();
 
$table.detach();
// ... add lots and lots of rows to table
$parent.append(table);

Don't Act on Absent Elements

jQuery won't tell you if you're trying to run a whole lot of code on an empty selection - it will proceed as 
though nothing's wrong. It's up to you to verify that your selection contains some elements.

You could make a plugin to use to ensure that the jQuery object is not empty.

// BAD: this runs three functions
// before it realizes there's nothing
// in the selection
$("#nosuchthing").slideUp();
 
// Better



var $mySelection = $("#nosuchthing");
if ($mySelection.length) { $mySelection.slideUp(); }
 
// BEST: add a doOnce plugin
jQuery.fn.doOnce = function(func){
    this.length && func.apply(this);
    return this;
};
 
$("li.cartitems").doOnce(function(){
    // make it ajax! \o/
});
 
// OR
 
$.fn.ensure = function(){
    if (this.length === 0) throw "Empty jQuery result.";
    return this;
};
 
$("ul.some-list").ensure().append(listItem);

This guidance is especially applicable for jQuery UI widgets, which have a lot of overhead even when the selection 
doesn't contain elements.

Selector Performance:
http://jsperf.com/wtfasdasdasd/2 (http://jsperf.com/wtfasdasdasd/2)
http://jsperf.com/wtfasdasdasd/5 (http://jsperf.com/wtfasdasdasd/5)
http://jsperf.com/find-vs-sizzle-jf (http://jsperf.com/find-vs-sizzle-jf)
http://jsperf.com/specific-left-or-right (http://jsperf.com/specific-left-or-right)

Event Listeners
JavaScript 1.8.5 (https://developer.mozilla.org/en-US/docs/JavaScript/New_in_JavaScript/1.8.5) introduces the 
Function.prototype.bind() (https://developer.mozilla.org/en-
US/docs/JavaScript/Reference/Global_Objects/Function/bind) method, which lets you specify the value that should be 
used as this for all calls to a given function. This lets you easily bypass problems where it's unclear what this 
will be, depending on the context from which your function was called. Note, however, that you'll need to keep a 
reference to the listener around so you can later remove it.

addEventListener

addEventListener() registers a single event listener on a single target. The event target may be a single element 
in a document, the document itself, a window, or an XMLHttpRequest.

To register more than one event listener for the target, call addEventListener() 
(https://developer.mozilla.org/en-US/docs/DOM/EventTarget.addEventListener) for the same target but with different 
event types, event listeners or capture parameters.

Syntax

target.addEventListener(type, listener[, useCapture]);

type

A string representing the event type to listen for.

http://jsperf.com/wtfasdasdasd/2
http://jsperf.com/wtfasdasdasd/5
http://jsperf.com/find-vs-sizzle-jf
http://jsperf.com/specific-left-or-right
https://developer.mozilla.org/en-US/docs/JavaScript/New_in_JavaScript/1.8.5
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Function/bind
https://developer.mozilla.org/en-US/docs/DOM/EventTarget.addEventListener


listener

The object that receives a notification when an event of the specified type occurs. This must be an object 
implementing the EventListener interface, or simply a JavaScript function.

useCapture (optional)

If true, useCapture indicates that the user wishes to initiate capture. After initiating capture, all events of 
the specified type will be dispatched to the registered listener before being dispatched to any EventTarget 
beneath it in the DOM tree. Events which are bubbling upward through the tree will not trigger a listener 
designated to use capture. Note that this parameter is not optional in all browser versions. If not specified, 
useCapture is false.

document.addEventListener("DOMContentLoaded", function(){
    alert("Document Ready");
});
 
function DOMContentLoaded(){
    alert("Document Ready");
}
 
document.addEventListener("DOMContentLoaded", DOMContentLoaded, false);
document.removeEventListener("DOMContentLoaded", DOMContentLoaded, false);
window.addEventListener("load", DOMContentLoaded, false);
window.attachEvent("onload", DOMContentLoaded);
document.attachEvent("onreadystatechange", DOMContentLoaded);
document.detachEvent("onreadystatechange", DOMContentLoaded);

readyState

The readyState property returns the (loading) status of the current document.

This property returns one of four values:
- uninitialized: has not started loading yet
- loading: loading
- interactive: has loaded enough and the user can interact with it
- complete: fully loaded

document.onreadystatechange is typically more optimal than window.onload as it fires before all external resources 
such as images are loaded.

document.readystate is a property and document.onload is an event.

// alternative to DOMContentLoaded
document.onreadystatechange = function(){
    if (document.readyState == "interactive") {
        initApplication();
    }
};
 
// alternative to load event
document.onreadystatechange = function(){
    if (document.readyState == "complete") {
        initApplication();
    }



};
 
function addEvent(obj, evt, fn){
    if (typeof obj.attachEvent != 'undefined') {
        obj.attachEvent("on" + evt, fn);
    } else if (typeof obj.addEventListener != 'undefined') {
        obj.addEventListener(evt, fn, false);
    } else {
        // support old browsers
    }
}
 
addEvent(window, 'load', function(){
    //  Initialization stuff here
});

The value of this within the handler

It is often desirable to reference the element from which the event handler was fired, such as when using a 
generic handler for a series of similar elements. When attaching a function using addEventListener() the value of 
this is changed—note that the value of this is passed to a function from the caller.

var el = document.getElementById("t");
el.addEventListener("click", function(){ modifyText(); }, false);

In the example above, the value of this within modifyText() when called from the click event is a reference to the 
table 't'. This is in contrast to the behavior that occurs if the handler is added in the HTML source:

<table id="t" onclick="modifyText();">

The value of this (http://www.quirksmode.org/js/this.html) within modifyText() when called from the onclick event 
will be a reference to the global (window) object.

Using a special function called handleEvent to catch any events:

var Something = function(element){
    this.name = 'Something Good';
    this.handleEvent = function(event){
        console.log(this.name); // 'Something Good', as this is the Something object
        switch (event.type) {
            case 'click':
                // some code here...
            break;
            case 'dblclick':
                // some code here...
            break;
        }
    };
 
    // Note that the listeners in this case are this, not this.handleEvent
    element.addEventListener('click', this, false);
    element.addEventListener('dblclick', this, false);
 
    // You can properly remove the listners
    element.removeEventListener('click', this, false);
    element.removeEventListener('dblclick', this, false);
};

http://www.quirksmode.org/js/this.html


Legacy Internet Explorer and attachEvent

In Internet Explorer versions prior to IE 9, you have to use attachEvent rather than the standard 
addEventListener. There is a drawback to attachEvent, the value of this will be a reference to the window object 
instead of the element on which it was fired.

if (el.addEventListener) {
    el.addEventListener('click', modifyText, false);
} else if (el.attachEvent) {
    el.attachEvent('onclick', modifyText);
}

Old way to add event handlers

addEventListener() was introduced with the DOM 2 Events specification. Before then, event listeners were 
registered as follows:

// Pass a function reference — do not add '()' after it, which would call the function!
el.onclick = modifyText;
  
// Using a function expression
el.onclick = function(){
    alert("Element Clicked!");
};

This method replaces the existing click event listener(s) on the element if there are any. Similarly for other 
events and associated event handlers such as blur (onblur), keypress (onkeypress), and so on.

Because it was essentially part of DOM 0, this method is very widely supported and requires no special cross–
browser code; hence it is normally used to register event listeners dynamically unless the extra features of 
addEventListener() are needed.

Memory Issues

In the first case, a new (anonymous) function is created at each loop turn. In the second case, the same 
previously declared function is used as an event handler. This results in smaller memory consumption.

Moreover, in the first case, since no reference to the anonymous functions is kept, it is not possible to call 
element.removeEventListener because we do not have a reference to the handler, while in the second case, it's 
possible to do myElement.removeEventListener("click", processEvent, false).

var i, els = document.getElementsByTagName('*');
  
// Case 1
for (i = 0; i < els.length; i++) {
    els[i].addEventListener("click", function(e){ /* do something */ }, false);
}
  



// Case 2
function processEvent(e){
    /* do something */
}
  
for (i = 0; i < els.length; i++) {
    els[i].addEventListener("click", processEvent, false);
}

Document Ready

There are multiple methods for determining when the document has been loaded.

The shortest DOMReady code, ever. Weighing in at 62 characters.

function r(f){/in/(document.readyState)?setTimeout(r,9,f):f()}

One final thing, although this was a fun exercise, it should be noted that you'd need a shim to fix Firefox <=3.5.  

So to get this to fully work in IE, we have to take into account these issues.

1. IE must have .test() doesn't get /foo/('foo')
2. IE requires a 2nd arg (Gecko, Webkit does not) eg: setTimeout(foo)
3. IE's 3rd arg is to specify a language (wow, how stupid is that
So we're back to this.

function r(f){/in/.test(document.readyState)?setTimeout('r('+f+')',9):f()}

And of course one final note, nothing will be able to beat the built-in DOM event at 47 characters (although it 
won't fire after being loaded once).

document.addEventListener('DOMContentLoaded', f);

Also sample script to calculate the time elapsed to load the document.

ContentLoaded (https://github.com/dperini/ContentLoaded/blob/master/src/contentloaded.js)
jQuery's Document Ready (http://jsfiddle.net/gerst20051/Za8fr/)

function contentLoaded(win, fn){
    var doc = win.document, done = false,
        add = doc.addEventListener ? 'addEventListener' : 'attachEvent',
        rem = doc.addEventListener ? 'removeEventListener' : 'detachEvent',
        pre = doc.addEventListener ? '' : 'on',
        init = function(e){
            if (e.type == 'readystatechange' && doc.readyState != 'complete') return;
            (e.type == 'load' ? win : doc)[rem](pre + e.type, init, false);
            if (!done && (done = true)) fn.call(win, e.type || e);
        };
    if (doc.readyState == 'complete') fn.call(win, 'lazy');
    else {
        doc[add](pre + 'DOMContentLoaded', init, false);
        doc[add](pre + 'readystatechange', init, false);
        win[add](pre + 'load', init, false);
    }
}
 
// another approach

https://github.com/dperini/ContentLoaded/blob/master/src/contentloaded.js
http://jsfiddle.net/gerst20051/Za8fr/


 
function contentLoaded(win, fn){
    var done = false, top = true,
        doc = win.document, root = doc.documentElement,
        add = doc.addEventListener ? 'addEventListener' : 'attachEvent',
        rem = doc.addEventListener ? 'removeEventListener' : 'detachEvent',
        pre = doc.addEventListener ? '' : 'on',
 
        init = function(e){
            if (e.type == 'readystatechange' && doc.readyState != 'complete') return;
            (e.type == 'load' ? win : doc)[rem](pre + e.type, init, false);
            if (!done && (done = true)) fn.call(win, e.type || e);
        },
 
        poll = function(){
            try {
                root.doScroll('left');
            } catch(e) {
                setTimeout(poll, 50);
                return;
            }
            init('poll');
        };
 
    if (doc.readyState == 'complete') fn.call(win, 'lazy');
    else {
        if (doc.createEventObject && root.doScroll) {
            try {
                top = !win.frameElement;
            } catch(e) {}
            if (top) poll();
        }
        doc[add](pre + 'DOMContentLoaded', init, false);
        doc[add](pre + 'readystatechange', init, false);
        win[add](pre + 'load', init, false);
    }
}
 
var $tt = (new Date).getTime();
function timeElapsed(t){ return ((new Date()).getTime() - t); }
 
contentLoaded(window,
    function(e){
        window.status = window.defaultStatus =
            ' * ' + (e.type || e) + ' ' +
            ' - ' + (e.eventType ? e.eventType : 'native') +
            ' in ' + timeElapsed($tt) + ' ms.';
    }
);

Dean Martin's Implementation

function init(){
    // quit if this function has already been called
    if (arguments.callee.done) return;
 
    // flag this function so we don't do the same thing twice
    arguments.callee.done = true;



 
    // kill the timer
    if (_timer) {
        clearInterval(_timer);
        _timer = null;
    }
 
    // create the "page loaded" message
    var text = document.createTextNode("Page loaded!");
    var message = document.getElementById("message");
    message.appendChild(text);
}
 
/* for Mozilla */
if (document.addEventListener) {
    document.addEventListener("DOMContentLoaded", init, false);
}
 
/* for Internet Explorer */
/*@cc_on @*/
/*@if (@_win32)
    document.write("<script id=__ie_onload defer src=javascript:void(0)><\/script>");
    var script = document.getElementById("__ie_onload");
    script.onreadystatechange = function() {
        if (this.readyState == "complete") {
            init(); // call the onload handler
        }
    };
/*@end @*/
 
/* for Safari */
if (/WebKit/i.test(navigator.userAgent)) { // sniff
    var _timer = setInterval(function(){
        if (/loaded|complete/.test(document.readyState)) {
            init(); // call the onload handler
        }
    }, 10);
}
 
/* for other browsers */
window.onload = init;

How does jQuery's document.ready work?

function bindReady(){
    if (readyBound) return;
    readyBound = true;
 
    // Mozilla, Opera and Webkit nightlies currently support this event
    if (document.addEventListener) {
        // Use the handy event callback
        document.addEventListener("DOMContentLoaded", function(){
            document.removeEventListener("DOMContentLoaded", arguments.callee, false);
            jQuery.ready();
        }, false);
 
        // If IE event model is used
    } else if (document.attachEvent) {



        // ensure firing before onload, maybe late but safe also for iframes
        document.attachEvent("onreadystatechange", function(){
            if (document.readyState === "complete") {
                document.detachEvent("onreadystatechange", arguments.callee);
                jQuery.ready();
            }
        });
 
        // If IE and not an iframe continually check to see if the document is ready
        if (document.documentElement.doScroll && window == window.top) (function(){
            if (jQuery.isReady) return;
 
            try {
                // If IE is used, use the trick by Diego Perini
                // http://javascript.nwbox.com/IEContentLoaded/ (http://javascript.nwbox.com/IEContentLoaded/)
                document.documentElement.doScroll("left");
            } catch(error) {
                setTimeout(arguments.callee, 0);
                return;
            }
 
            // and execute any waiting functions
            jQuery.ready();
        })();
    }
 
    // A fallback to window.onload, that will always work
    jQuery.event.add(window, "load", jQuery.ready);
}

Here's a lightweight alternative similar to jQuery's method.

var ready = (function(){
    function ready(f){
        if (ready.done) return f();
        if (ready.timer) {
            ready.ready.push(f);
        } else {
            addEvent(window, "load" isDOMReady);
            ready.ready = [f];
            ready.timer = setInterval(isDOMReady, 13);
        }
    };
 
    function isDOMReady(){
        if (ready.done) return false;
        if (document && document.getElementsByTagName && document.getElementById && document.body) {
            clearInterval(ready.timer);
            ready.timer = null;
            for (var i = 0; i < ready.ready.length; i++) {
                ready.ready[i]();
            }
            ready.ready = null;
            ready.done = true;
        }
    }
 
    return ready;

http://javascript.nwbox.com/IEContentLoaded/


})();

Another Approach. Also demonstrates writing JavaScript without semicolons.

var domready = function(ready){
    var fns = [], fn, f = false
    , doc = document
    , testEl = doc.documentElement
    , hack = testEl.doScroll
    , domContentLoaded = 'DOMContentLoaded'
    , addEventListener = 'addEventListener'
    , onreadystatechange = 'onreadystatechange'
    , readyState = 'readyState'
    , loadedRgx = hack ? /̂loaded|̂c/ : /̂loaded|c/
    , loaded = loadedRgx.test(doc[readyState])
 
    function flush(f){
        loaded = 1
        while (f = fns.shift()) f()
    }
 
    doc[addEventListener] && doc[addEventListener](domContentLoaded, fn = function(){
        doc.removeEventListener(domContentLoaded, fn, f)
        flush()
    }, f)
 
 
    hack && doc.attachEvent(onreadystatechange, fn = function(){
        if (/̂c/.test(doc[readyState])) {
            doc.detachEvent(onreadystatechange, fn)
            flush()
        }
    })
 
    return (ready = hack ?
        function(fn){
            self != top ?
            loaded ? fn() : fns.push(fn) :
            function(){
                try {
                    testEl.doScroll('left')
                } catch (e) {
                    return setTimeout(function() { ready(fn) }, 50)
                }
                fn()
            }()
        } :
        function (fn) {
            loaded ? fn() : fns.push(fn)
        })
};

var isDOMPresent = "document" in this && !("fake" in this.document);

XHR Eval



Script and page must be same domain.

var xhrObj = getXHRObject();
xhrObj.onreadystatechange = function(){
    if (xhr.readyState != 4) return;
    eval(xhr.responseText);
};
xhr.open('GET', 'A.js', true);
xhr.send('');
 
// Placed In A Function
 
function ajax(url){
    var xhr = new XMLHttpRequest;
    xhr.open("GET", url, false);
    if (xhr.overrideMimeType) xhr.overrideMimeType("text/plain");
    xhr.setRequestHeader("If-Modified-Since", "Fri, 01 Jan 1960 00:00:00 GMT");
    xhr.send(null);
    if (xhr.status !== 200 && xhr.status !== 0) throw "XMLHttpRequest failed, status code " + xhr.status;
    return xhr.responseText;
};

Another approach to XHR.

function createXHR(){
    var request = false;
    try {
        request = new ActiveXObject('Msxml2.XMLHTTP');
    } catch (err2) {
        try {
            request = new ActiveXObject('Microsoft.XMLHTTP');
        } catch (err3) {
            try {
                request = new XMLHttpRequest();
            } catch (err1) {
                request = false;
            }
        }
    }
    return request;
}

The main use of using XHR requests is to get JSON data from a server. This is how you parse the JSON data.

function parseJSON(data){
    return (new Function('return ' + data))();
}
 
// OR
 
function parseJSON(strJSON){
    return eval("(function(){return " + strJSON + ";})()");
}
 



// OR
 
function parseJSON(myObject){
    returne eval('(' + myObject + ')');
}

eval expects valid javascript, which JSON might not be, so eval cannot parse some valid JSON texts (for example, 
U+2028 is valid in JSON, not valid in javascript).

In modern browsers you can simply do: JSON.parse(myObject);

Most browsers support JSON.parse(), which is defined in ECMA-262 5th Edition (the specification that JS is based 
on). For the browsers that don't you can implement it using json2.js (https://github.com/douglascrockford/JSON-
js/blob/master/json2.js) or json3.js (http://cdnjs.cloudflare.com/ajax/libs/json3/3.2.6/json3.js).

The JSON 3 parser does not use eval or regular expressions. This provides security and performance benefits in 
obsolete and mobile environments, where the margin is particularly significant.

As noted in the comments, if you're already using jQuery, there is a $.parseJSON function that maps to JSON.parse 
if available or a form of eval in older browsers. However, this performs additional, unnecessary checks that are 
also performed by JSON.parse, so for the best all round performance I'd recommend using it like so:

var json = '{"result":true,"count":1}', obj = JSON && JSON.parse(json) || $.parseJSON(json);

This will ensure you use native JSON.parse immediately, rather than having jQuery perform sanity checks on the 
string before passing it to the native parsing function. It's actually not necessary to check for native support 
first and then fall back to jQuery. jQuery 1.10 tries JSON.parse first, then the own implementation. jQuery 2.x is 
directly calling JSON.parse without checking or fallback.

Real Typeof
There are many problems with the built in JavaScript typeof operator. As evident from the following fix, typeof 
return "object" for null, array, date, regex, and object values.

function RealTypeOf(v){
    if (typeof v == "object") {
        if (v === null) return "null";
        if (v.constructor == (new Array).constructor) return "array";
        if (v.constructor == (new Date).constructor) return "date";
        if (v.constructor == (new RegExp).constructor) return "regex";
        return "object";
    }
    return typeof v;
}

This object summarizes the possible return values of typeof:

Type=> Result
Host object (provided by the JS environment)=> Implementation-dependent
Function object (implements [[Call]] in ECMA-262 terms)=> "function"
E4X XML object=> "xml"
E4X XMLList object=> "xml"
Any other object=> "object"

https://github.com/douglascrockford/JSON-js/blob/master/json2.js
http://cdnjs.cloudflare.com/ajax/libs/json3/3.2.6/json3.js


var obj = {};
obj['typeof undefined'] = typeof undefined; // "undefined"
obj['typeof null'] = typeof null; // "object"
obj['typeof true'] = typeof true; // "boolean"
obj['typeof false'] = typeof false; // "boolean"
obj['typeof 1'] = typeof 1; // "number"
obj['typeof "string"'] = typeof "string"; // "string"
obj['typeof function(){}'] = typeof function(){}; // "function"

typeof -> Array
(
    [typeof undefined] => undefined
    [typeof null] => object
    [typeof true] => boolean
    [typeof false] => boolean
    [typeof 1] => number
    [typeof "string"] => string
    [typeof function(){}] => function
)

The default toString function of Object returns a string with the following format… [object [[Class]]] …where 
[[Class]] is the class property of the object. Unfortunately, the specialized built-in objects mostly overwrite 
Object.prototype.toString with toString methods of their own…

var obj = {};
obj['[1,2,3].toString()'] = [1,2,3].toString(); // "1, 2, 3"
obj['(new Date).toString()'] = (new Date).toString(); // "Sat Aug 06 2011 16:29:13 GMT-0700 (PDT)"
obj['/a-z/.toString()'] = /a-z/.toString(); // "/a-z/"

Object.toString -> Array
(
    [[1,2,3].toString()] => 1,2,3
    [(new Date).toString()] => Sun Dec 01 2013 21:05:33 GMT-0500 (EST)
    [/a-z/.toString()] => /a-z/
)

Fortunately we can use the call function to force the generic toString function upon them. (Since a new, generic 
object will always use the toString function defined by Object.prototype we can safely use ({}).toString as an 
abbreviation for Object.prototype.toString).

var obj = {};
obj['Object.prototype.toString.call([1,2,3])'] = Object.prototype.toString.call([1,2,3]); // "[object Array]"
obj['Object.prototype.toString.call(new Date)'] = Object.prototype.toString.call(new Date); // "[object Date]"
obj['Object.prototype.toString.call(/a-z/)'] = Object.prototype.toString.call(/a-z/); // "[object RegExp]"

Object.prototype.toString.call -> Array
(
    [Object.prototype.toString.call([1,2,3])] => [object Array]
    [Object.prototype.toString.call(new Date)] => [object Date]
    [Object.prototype.toString.call(/a-z/)] => [object RegExp]
)



var toType = function(obj){
    return ({}).toString.call(obj).match(/\s([a-zA-Z]+)/)[1].toLowerCase();
}
 
Object.toType = (function toType(global){
    return function(obj){
        if (obj === global) {
            return "global";
        }
        return ({}).toString.call(obj).match(/\s([a-z|A-Z]+)/)[1].toLowerCase();
    }
})(this);
 
var obj = {};
obj['Object.toType(window)'] = Object.toType(window); // "global" (all browsers)
obj['Object.toType([1,2,3])'] = Object.toType([1,2,3]); // "array" (all browsers)
obj['Object.toType(/a-z/)'] = Object.toType(/a-z/); // "regexp" (all browsers)
obj['Object.toType(JSON)'] = Object.toType(JSON); // "json" (all browsers)

Object.toType -> Array
(
    [Object.toType(window)] => global
    [Object.toType([1,2,3])] => array
    [Object.toType(/a-z/)] => regexp
    [Object.toType(JSON)] => json
)

Normal cases

// Numbers
typeof 37 === 'number';
typeof 3.14 === 'number';
typeof Math.LN2 === 'number';
typeof Infinity === 'number';
typeof NaN === 'number'; // Despite being "Not-A-Number"
typeof Number(1) === 'number'; // but never use this form!
 
// Strings
typeof "" === 'string';
typeof "bla" === 'string';
typeof (typeof 1) === 'string'; // typeof always return a string
typeof String("abc") === 'string'; // but never use this form!
 
// Booleans
typeof true === 'boolean';
typeof false === 'boolean';
typeof Boolean(true) === 'boolean'; // but never use this form!
 
// Undefined
typeof undefined === 'undefined';
typeof blabla === 'undefined'; // an undefined variable
 
// Objects
typeof {a:1} === 'object';
typeof [1, 2, 4] === 'object'; // use Array.isArray or Object.prototype.toString.call to differentiate regular objects from arrays
typeof new Date() === 'object';



 
typeof new Boolean(true) === 'object'; // this is confusing. Don't use!
typeof new Number(1) === 'object'; // this is confusing. Don't use!
typeof new String("abc") === 'object';  // this is confusing. Don't use!
 
// Functions
typeof function(){} === 'function';
typeof Math.sin === 'function';
null
 
typeof null === 'object'; // This stands since the beginning of JavaScript

In the first implementation of JavaScript, JavaScript values were represented as a type tag and a value. The type 
tag for objects was 0. null was represented as the NULL pointer (0x00 is most platforms). Consequently, null had 0 
as type tag, hence the bogus typeof return value. (reference)

A fix was proposed for ECMAScript (via an opt-in), but was rejected. It would have resulted in typeof null === 
'null'.

Regular expressions

Callable regular expressions were a non-standard addition in some browsers (need reference to say which).

typeof /s/ === 'function'; // Chrome 1-12 ... // Non-conform to ECMAScript 5.1
typeof /s/ === 'object'; // Firefox 5+ ...    // Conform to ECMAScript 5.1

Object -> Array
(
    [typeof /s/] => object
)

Other quirks

alert in old Internet Explorer versions

On IE 6, 7, and 8, typeof alert === 'object'

Note: Not a quirk. It's telling the truth. Lots of old IE host objects are objects not functions
Specification

typeof {a: 4}; //"object"
typeof [1, 2, 3]; //"object"
(function() {console.log(typeof arguments)})(); //object
typeof new ReferenceError; //"object"
typeof new Date; //"object"
typeof /a-z/; //"object"
typeof Math; //"object"
typeof JSON; //"object"
typeof new Number(4); //"object"
typeof new String("abc"); //"object"
typeof new Boolean(true); //"object"

toType({a: 4}); //"object"
toType([1, 2, 3]); //"array"
(function() {console.log(toType(arguments))})(); //arguments
toType(new ReferenceError); //"error"



toType(new Date); //"date"
toType(/a-z/); //"regexp"
toType(Math); //"math"
toType(JSON); //"json"
toType(new Number(4)); //"number"
toType(new String("abc")); //"string"
toType(new Boolean(true)); //"boolean"

Jon Combe - RealTypeOf: a better JavaScript typeof (http://joncom.be/code/realtypeof/)
ECMA-262 section 11.4.3 (http://ecma-international.org/ecma-262/5.1/#sec-11.4.3)

CSS Style Manipulation
First, rely on the cascade whenever possible. CSS has a natural system of fallbacks built right in. Browsers take 
into account the last value that they were able to understand (this is how the cascade was designed to work). This 
means that if you order different solutions to the same problem from least advanced to most advanced, browsers 
will naturally use the most advanced solution they are capable of understanding.

Just like normal property fallbacks, vendor prefixes should be ordered from oldest version to newest so that each 
browser gets the best code it is capable of handling. If there is a standard syntax, you want to put that last so 
that as support for the standard increases, more and more browsers will use the best code. 

Be aware that setAttribute will remove all other style properties that may already have been defined in the 
element's style object. If the some-element element above had an in-line style attribute of say style="font-size: 
18px", that value would have been removed by the use of setAttribute.

http://www.stubbornella.org/content/2012/05/02/cross-browser-debugging-css/ 
(http://www.stubbornella.org/content/2012/05/02/cross-browser-debugging-css/)

DOM Manipulation
http://jsperf.com/childnodes-vs-firstchild (http://jsperf.com/childnodes-vs-firstchild)
http://jsperf.com/document-vs-getelementsbytagname (http://jsperf.com/document-vs-getelementsbytagname)

Modify Node Values

function modifyText(){
    var t1 = document.getElementById("t1");
    if (t1.firstChild.nodeValue == "three") {
        t1.firstChild.nodeValue = "two";
    } else {
        t1.firstChild.nodeValue = "three";
    }
}
 
// OR
 
function modifyText2(text){
    var t1 = document.getElementById("t2");
    t1.firstChild.nodeValue = text;    
}

http://joncom.be/code/realtypeof/
http://ecma-international.org/ecma-262/5.1/#sec-11.4.3
http://www.stubbornella.org/content/2012/05/02/cross-browser-debugging-css/
http://jsperf.com/childnodes-vs-firstchild
http://jsperf.com/document-vs-getelementsbytagname


var pclass = document.querySelector("p.class");
pclasss.innerText = "This is a paragraph!";
 
var node = document.getElementById("myList2").lastChild;
var list = document.getElementById("myList1");
list.insertBefore(node, list.childNodes[0]);
 
keys(document);
values(document);
 
// document functions
addEvenetListener
adoptNode
appendChild
attributes
bgColor
captureEvents
clear
cloneNode
contains
createAttribute
createAttributeNS
createCDATASection
createComment
createDocumentFragment
createElement
createEvent
createExpression
createTextNode
createTreeWalker
dispatchEvent
fgColor
getCSSCanvasContext
getElementById
getElementsByClassName
getElementsByName
getElementsByTagName
getOverrideStyle
getSelection
hasAttributes
hasChildNodes
hasFocus
height
insertBefore
isPrototypeOf
linkColor
querySelector
querySelectorAll
readyState
referrer
releaseEvents
removeEventListener
title
valueOf
vlinkColor
width
 
// document elements
activeElement



all
anchors
applets
body
childNodes
documentElement
embeds
firstChild
forms
head
images
lastChild
links
nextSibling
nodeName
nodeType
nodeValue
parentElement
parentNode
previousSibling
removeChild
replaceChild
scripts
styleSheets
textContent
plugins
 
// document action events
onabort
onbeforecopy
onbeforecut
onbeforepaste
onblur
onchange
onclick
oncontextmenu
oncopy
oncut
ondblclick
ondrag
ondragend
ondragenter
ondragleave
ondragover
ondragstart
ondrop
onerror
onfocus
oninput
oninvalid
onkeydown
onkeyup
onload
onmousedown
onmousemove
onmouseout
onmouseover
onmouseup
onmousewheel



onpaste
onreadystatechange
onreset
onscroll
onsearch
onselect
onselectionchange
onselectstart
onsubmit
 
// checkout
elementFromPoint
evaluate
execCommand
importNode
isEqualNode
isSameNode
isSupported
lastModified
normalize
open
ownerDocument

document.documentElement

Read-only and returns the element that is the root element of the document (for example, the <html> element for 
HTML documents).

var rootElement = document.documentElement;
var firstTier = rootElement.childNodes;
  
// firstTier is the NodeList of the direct children of the root element
for (var i = 0; i < firstTier.length; i++) {
    // do something with each direct kid of the root element as firstTier[i]
}

This property is a read-only convenience for getting the root element associated with any document.

HTML documents typically contain a single child node, <html>, perhaps with a DOCTYPE declaration before it. XML 
documents often contain multiple child nodes: the root element, the DOCTYPE declaration, and processing 
instructions.

That's why you should use document.documentElement rather than document.firstChild to get the root element.

document.body

Returns the <body> or <frameset> node of the current document.

var objRef = document.body; 
document.body = objRef;



 
// in HTML: <body id="oldBodyElement"></body>
alert(document.body.id); // "oldBodyElement"
  
var aNewBodyElement = document.createElement("body");
  
aNewBodyElement.id = "newBodyElement";
document.body = aNewBodyElement;
alert(document.body.id); // "newBodyElement"

document.body is the element that contains the content for the document. In documents with <body> contents, 
returns the <body> element, and in frameset documents, this returns the outermost <frameset> element.

Though body is settable, setting a new body on a document will effectively remove all the current children of the 
existing <body> element.

JavaScript CSS Selector Engine Timeline
2003.03.25: document.getElementsBySelector() (http://simonwillison.net/2003/Mar/25/getElementsBySelector/) by 
Simon Willison (later used in behaviour.js) [source 
(http://simonwillison.net/static/2003/getElementsBySelector.js)]
2004.04.10: CssQuery() 1.0 (http://dean.edwards.name/my/cssQuery/1_0/): by Dean Edwards [source 
(http://dean.edwards.name/my/cssQuery/1_0/cssQuery-source.js)]
2005.08.19: CssQuery() 2.0 (http://dean.edwards.name/my/cssQuery/). [source 
(http://dev.fckeditor.net/browser/FCKtest/runners/selenium/lib/cssQuery/src?rev=1044)]
2005.08.22: jSelect (http://ejohn.org/blog/selectors-in-javascript/) (precursor to jQuery) [source 
(http://ejohn.org/apps/jselect/selector.js)]
2006.01.14: jQuery (http://ejohn.org/blog/barcampnyc-wrap-up/) first release. [source 
(https://github.com/jquery/jquery/blob/1.0a/jquery/jquery.js#L526-606)]
2006.01.18: Prototype (http://ajaxian.com/archives/prototype-adds-css-selector-function-divpage-psummary-img). 
Initial release of selector engine. [source 
(https://github.com/sstephenson/prototype/blob/bb4d189b37b196dcd8bb0b5cb551e1cd7084596f/src/selector.js)]
2006.04.04: moo.dom (http://mad4milk.net/entry/moo.dom-easily-target-html-elements) (precursor to mootools) 
[source (http://moodom.mad4milk.net/moo.dom.js)]
2006.08.26: jQuery 1.0 (http://jquery.com/blog/2006/08/26/jquery-10/) [source 
(http://dev.jquery.com/browser/tags/1.0/src/jquery/jquery.js#L1157)]
2006.11.14: Mochikit Selector (http://www.mochikit.com/doc/html/MochiKit/Selector.html). (orig. ported from 
prototype) [source (http://trac.mochikit.com/browser/mochikit/trunk/MochiKit/Selector.js)]
2007.01.08: jQuery 1.1a (http://jquery.com/blog/2007/01/08/jquery-11a/) ("10-20x faster than 1.0") [source 
(http://dev.jquery.com/browser/tags/1.1a/src/selector/selector.js)]
2007.01.11: DomQuery (http://www.jackslocum.com/blog/2007/01/11/domquery-css-selector-basic-xpath-implementation-
with-benchmarks/) by Jack Slocum (ExtJS). [source (http://www.yui-ext.com/deploy/ext-
1.0.1/source/core/DomQuery.js)]
2007.02.05: dojo.query() (http://dojotoolkit.org/node/336). [source 
(http://trac.dojotoolkit.org/browser/trunk/src/query.js)]
2007.03.21: base2.DOM (http://dean.edwards.name/weblog/2007/03/yet-another/). [source 
(http://base2.googlecode.com/svn/version/1.0(beta2)/src/base2-dom.js)]
2007.05.01: Prototype 1.5.1 (http://www.prototypejs.org/2007/5/1/prototype-1-5-1-released) [source 
(http://dev.rubyonrails.org/browser/spinoffs/prototype/tags/rel_1-5-1/src/selector.js)]
2007.05.07: Mootools 1.1 (http://blog.mootools.net/2007/6/11/selectors-on-fire) [source 
(http://dev.mootools.net/browser/tags/1-10/Element/Element.Selectors.js)]
2007.07.01: jQuery 1.1.3 (http://jquery.com/blog/2007/07/01/jquery-113-800-faster-still-20kb/) ("800% faster") 
[source (http://dev.jquery.com/browser/tags/1.1.3.1/src/selector/selector.js)]
2007.07.10: Ext 1.1 RC1 (http://extjs.com/blog/2007/07/10/css-selectors-speed-myths/) [source 
(http://trac.pagodacms.org/browser/pagoda/misc/ajax_form/javascript/ext-1.1-rc1/source/core/DomQuery.js?rev=467)]
2007.07.10: Dojo 0.9 [source (http://download.dojotoolkit.org/release-0.9.0/dojo-release-0.9.0-
src/dojo/_base/query.js)]

http://simonwillison.net/2003/Mar/25/getElementsBySelector/
http://simonwillison.net/static/2003/getElementsBySelector.js
http://dean.edwards.name/my/cssQuery/1_0/
http://dean.edwards.name/my/cssQuery/1_0/cssQuery-source.js
http://dean.edwards.name/my/cssQuery/
http://dev.fckeditor.net/browser/FCKtest/runners/selenium/lib/cssQuery/src?rev=1044
http://ejohn.org/blog/selectors-in-javascript/
http://ejohn.org/apps/jselect/selector.js
http://ejohn.org/blog/barcampnyc-wrap-up/
https://github.com/jquery/jquery/blob/1.0a/jquery/jquery.js#L526-606
http://ajaxian.com/archives/prototype-adds-css-selector-function-divpage-psummary-img
https://github.com/sstephenson/prototype/blob/bb4d189b37b196dcd8bb0b5cb551e1cd7084596f/src/selector.js
http://mad4milk.net/entry/moo.dom-easily-target-html-elements
http://moodom.mad4milk.net/moo.dom.js
http://jquery.com/blog/2006/08/26/jquery-10/
http://dev.jquery.com/browser/tags/1.0/src/jquery/jquery.js#L1157
http://www.mochikit.com/doc/html/MochiKit/Selector.html
http://trac.mochikit.com/browser/mochikit/trunk/MochiKit/Selector.js
http://jquery.com/blog/2007/01/08/jquery-11a/
http://dev.jquery.com/browser/tags/1.1a/src/selector/selector.js
http://www.jackslocum.com/blog/2007/01/11/domquery-css-selector-basic-xpath-implementation-with-benchmarks/
http://www.yui-ext.com/deploy/ext-1.0.1/source/core/DomQuery.js
http://dojotoolkit.org/node/336
http://trac.dojotoolkit.org/browser/trunk/src/query.js
http://dean.edwards.name/weblog/2007/03/yet-another/
http://base2.googlecode.com/svn/version/1.0(beta2)/src/base2-dom.js
http://www.prototypejs.org/2007/5/1/prototype-1-5-1-released
http://dev.rubyonrails.org/browser/spinoffs/prototype/tags/rel_1-5-1/src/selector.js
http://blog.mootools.net/2007/6/11/selectors-on-fire
http://dev.mootools.net/browser/tags/1-10/Element/Element.Selectors.js
http://jquery.com/blog/2007/07/01/jquery-113-800-faster-still-20kb/
http://dev.jquery.com/browser/tags/1.1.3.1/src/selector/selector.js
http://extjs.com/blog/2007/07/10/css-selectors-speed-myths/
http://trac.pagodacms.org/browser/pagoda/misc/ajax_form/javascript/ext-1.1-rc1/source/core/DomQuery.js?rev=467
http://download.dojotoolkit.org/release-0.9.0/dojo-release-0.9.0-src/dojo/_base/query.js


2007.12.04: YUI 2.4.0 (http://yuiblog.com/blog/2007/12/04/yuii-240/) [source 
(http://yui.yahooapis.com/2.4.1/build/selector/selector-beta-debug.js)]
2007.12.17: NWMatcher (http://javascript.nwbox.com/NWMatcher/) by Diego Perini [source 
(http://nwevents.googlecode.com/svn/trunk/nwmatcher.js)]
2007.12.17: DOMAssistant 2.5 (http://www.robertnyman.com/2007/12/17/domassistant-25-released-css-selector-support-
new-ajax-methods-and-more-goodies-added/) by Robert Nyman [source 
(http://domassistant.googlecode.com/svn/branches/2.5/DOMAssistantComplete.js)]

Browser Quirks
Use insertBefore instead of appendChild to circumvent an IE6 bug.

http://jsperf.com/string-vs-regex/3 (http://jsperf.com/string-vs-regex/3)
if (readyState == "loaded" || readyState == "complete") {}
is much faster than
if (/loaded|complete/.test(readyState)) {}

When eval( '{"key" : 42}' ) is called, { is interpreted as a block of code instead of an object literal. Hence, 
the Grouping Operator (parentheses) is used to force eval to interpret the JSON as an object literal: eval( 
'({"key" : 42})' );.

IE fires both onload and onreadystatechange in this method.

var s = document.createElement("script"),
    h = document.head || document.getElementsByTagName("head")[0] || document.documentElement,
    done = false;
s.src = "http://code.jquery.com/jquery.min.js (http://code.jquery.com/jquery.min.js)";
s.onload = s.onreadystatechange = function(){
    if (!this.readyState || this.readyState == "complete" || this.readyState == "loaded") {
        if (!done && (done=true)) {
            main();
            s.onload = s.onreadystatechange = null;
            if (h && s.parentNode) h.removeChild(s);
            s = undefined;
        }
    }
};
h.insertBefore(s, h.firstChild);

Array.prototype.slice.call

IE 6 does not support this technique on nodeLists (childNodes and lists returned by getElementsByTagName()). In 
fact it will break you JavaScript code and throw an exception.

// arguments
function getArgumentsAsArray(){
    return Array.prototype.slice.call(arguments);
}
 
// nodelist
function getElementsByTagName(el, tagName){
    return Array.prototype.slice.call(el.getElementsByTagName(tagName));
}

http://yuiblog.com/blog/2007/12/04/yuii-240/
http://yui.yahooapis.com/2.4.1/build/selector/selector-beta-debug.js
http://javascript.nwbox.com/NWMatcher/
http://nwevents.googlecode.com/svn/trunk/nwmatcher.js
http://www.robertnyman.com/2007/12/17/domassistant-25-released-css-selector-support-new-ajax-methods-and-more-goodies-added/
http://domassistant.googlecode.com/svn/branches/2.5/DOMAssistantComplete.js
http://jsperf.com/string-vs-regex/3
http://code.jquery.com/jquery.min.js


Although ECMAScript makes iteration order of objects implementation-dependent, it may appear that all major 
browsers support an iteration order based on the earliest added property coming first (at least for properties not 
on the prototype). However, in the case of Internet Explorer, when one uses delete on a property, some confusing 
behavior results, preventing other browsers from using simple objects like object literals as ordered associative 
arrays. In Explorer, while the property value is indeed set to undefined, if one later adds back a property with 
the same name, the property will be iterated in its old position--not at the end of the iteration sequence as one 
might expect after having deleted the property and then added it back.

So if you want to simulate an ordered associative array in a cross-browser environment, you are forced to either 
use two separate arrays (one for the keys and the other for the values), or build an array of single-property 
objects, etc.

Can't write to {}.__proto__ in IE.

XHR

Microsoft failed to properly implement the XMLHttpRequest in IE7 (can't request local files), so use the 
ActiveXObject when it is available. Additionally XMLHttpRequest can be disabled in IE7/IE8 so you need a fallback.

Add protocol if not provided (IE7 issue with protocol-less urls.

Firefox throws exceptions when accessing properties of an xhr when a network error occurred.

When requesting binary data, IE6-9 will throw an exception on any attempt to access responseText.

Firefox throws an exception when accessing statusText for faulty cross-domain requests.

IE - response.text sometimes returns 1223 when it should be 204.

A bunch of bugs in cloning input elements in IE:

IE6-8 fails to persist the checked state of a cloned checkbox or radio button. Worse, IE6-7 fail to give the 
cloned element a checked appearance if the defaultChecked value isn't also set.

IE6-7 get confused and end up setting the value of a cloned checkbox/radio button to an empty string instead of 
"on".

IE6-8 fails to set the defaultValue to the correct value when cloning other types of input fields.

JavaScript:
document.getElementById("obj").getElementsByTagName("*");

HTML:
<object id="obj">
<param name="src" value="test.mov"/>
<param name="title" value="My Video"/>
</object>

Common CSS Tweaks in IE

- Needing to add hasLayout with zoom:1



- Position relative causing things to disappear
- 3px float bug
- Expanding container float bug (useful!) and overflow hidden which unfortunately "fixes" this useful bug.

Undeclared assignment throws in IE, when identifier corresponds to element name/id. jsFiddle 
(http://jsfiddle.net/gerst20051/cgAds/)

So, you think you know JavaScript?

1. Scope

What value gets alerted?

var foo = 1;
function bar(){
    if (!foo) {
        var foo = 10;
    }
    alert(foo);
}
bar();

2. Scope / Function Hoisting and Returning

What value gets alerted?

var a = 1;
function b(){
    a = 10;
    return;
    function a(){}
}
b();
alert(a);

3. Scope

What value gets alerted?

if (!("a" in window)) {
    var a = 1;
}
alert(a);

http://jsfiddle.net/gerst20051/cgAds/


4. Scope and Variable Initialization

What value gets alerted?

if (!("a" in window)) {
    a = 1;
}
alert(a);

5. Variable and Function Names

What value gets alerted?

var a = 1,
    b = function a(x){
        x && a(--x);
    };
alert(a);

6. Variable Initialization

What value gets alerted?

function a(x){
    return x * 2;
}
var a;
alert(a);

7. Modifying Arguments Variable

What value gets alerted?

function b(x, y, a){
    arguments[2] = 10;
    alert(a);
}
b(1, 2, 3);

8. Context Using Null

What value gets alerted?



function a(){
    alert(this);
}
a.call(null);

9. Closure

What value do you get for baz, bim, and bar when accessed outside the function?

// a self-executing anonymous function
 
(function(){
    var baz = 1;
    var bim = function(){ alert(baz); };
    bar = function(){ alert(baz); };
})();
 
console.log(baz);
bim();
bar();

10. Primitive Objects

Will found evaluate to true or false? If found is true "Found" will be alerted.

var found = new Boolean(false);
 
if (found) {
    alert("Found");
}

11. Hoisting Duplicates Behavior

What values gets logged for (typeof f) and for (f())?

console.log(typeof f);
if (true) {
    function f(){ return 1; }
} else {
    function f(){ return 2; }
}
console.log(f());

12. Math.min / Math.max



Does this expression evaluate to true or false?

console.log(Math.min() < Math.max());

13. Hoisting / Multiple Function Statements

What value does the first bar() return? What value does the second bar() return? What value does the last bar() 
return?

function bar(){ return 1; }
bar();
if (true) {
    // overwritting with function statement
    function bar(){ return 2; }
    bar();
}
function bar(){ return 3; }
bar();

#. Topic

Question?

 

Quiz Answers
1. 10

The browser will alert 10. JavaScript isn't block scoped but function scoped. The var foo inside the conditional 
brackets causes foo to be undefined (a falsy value) which causes the conditional to evaluate to true; therefore, 
the value of foo is set to 10. As we already know, all functions and variables are hoisted to the top of it's 
scope, but aren't initialized as demonstrated in the following code.

It looks like this.

var foo = 1;
function bar(){
    var foo;
    if (!foo) {
        foo = 10;
    }
    alert(foo);
}
bar();

2. 1

Here, of course, the browser will alert "1". So what's going on here? While it might seem strange, dangerous, and 



confusing, this is actually a powerful and expressive feature of the language. I don't know if there is a standard 
name for this specific behavior, but I've come to like the term "hoisting".

It looks like this.

var a;
function b(){
    var a = function(){};
    a = 10;
    return;
}
a = 1;
b();
alert(a);

3. undefined

4. 1

5. 1

6. function a(x){ ... 

"function a(x){
 return x * 2;
}"

7. 3

8. window

9. error, error, 1

baz // ReferenceError: baz is not defined
bim // ReferenceError: bim is not defined
bar // 1

baz and bim are not defined outside of the function, so they will result in a ReferenceError.

bar is defined outside of the anonymous function because it wasn't declared with var; furthermore, because it was 
defined in the same scope as baz, it has access to baz even though other code outside of the function does not.

10. true

Found is alerted. In this example, a Boolean object is given a value of false, yet console.log("Found") still 
executes. That's because an object is always coerced to true when placed in a conditional statement. It doesn't 
matter that the object represents false, only that it is an object, and therefore evaluates to true.

11. function, 2

12. false

The start number (used in comparisons) for Math.min should be Infinity. All number that are lower than positive 
infinity should be the smallest from a list, if there are no smaller then Infinity is the smallest (the only 
option) in the list. And for Math.max it's the same; all numbers that are larger than negative infinity should be 
the biggest if there are no bigger.

Math.min(5, 100) where 5 is smaller than positive infinity (Infinity) and 100 it will return 5.

Calling Math.min and Math.max with an array parameter may won't work on every platform. You should do the 
following instead:



Math.min.apply(null, [1, 2, 3, 4, 5]); // returns 1

Where the first parameter is the scope argument. Because Math.min() and Math.max() are "static" functions, we do 
not give this scope argument a value.

If no arguments are given, the result is Infinity for Math.min() and -Infinity for Math.max(). If any value is 
NaN, the result is NaN.

Math.max([1, 2, 3, 4]); // NaN

13. 3, 3, 3

Before the code even reaches the if statement the value of the variable bar is already set to the the last bar 
function (due to function hoisting) which returns 3.

#. 

FAQ

What exactly is undefined?

Can you assign undefined to a variable?

You can certainly assign undefined to it, but that won't delete the variable. Only the delete object.property 
operator really removes things but delete is really meant for properties rather than variables as such. Browsers 
will let you get away with straight delete variable, but it's not a good idea and won't work in ECMAScript Fifth 
Edition's strict mode. If you want to free up a reference to something so it can be garbage-collected, it would be 
more usual to say variable = null.

What does if (!foo) actually do?

Why should you split script tag?

The first occurrence of the character sequence "</" (end-tag open delimiter) is treated as terminating the end of 
the element's content.

</script> has to be broken up because otherwise it would end the enclosing <script></script> block too early. 
Really it should be split between the < and the /, because a script block is supposed (according to SGML 
(http://www.w3.org/TR/html4/types.html#type-cdata)) to be terminated by any end-tag open (ETAGO 
(http://mathiasbynens.be/notes/etago)) sequence (i.e. </):

document.write("<script><\/script>");
// OR
document.write("<scr"+"ipt></sc"+"ript>");
// OR
document.write("\x3Cscript>\x3C/script>");

http://www.w3.org/TR/html4/types.html#type-cdata
http://mathiasbynens.be/notes/etago


Whenever you need to use </style> inside a <style> element, or </script> inside a <script> element, just escape 
these strings. In both CSS and JavaScript there are various ways of doing this, but using a backslash (\, also 
known as "reverse solidus character") is by far the simplest.

Another method used to get around this is to dynamically create and insert a script tag.

var script = document.createElement('script');
script.src = 'http://ads.com/buyme?rand= (http://ads.com/buyme?rand=)'+Math.random();
 
// now append the script into HEAD, it will fetched and executed
document.documentElement.firstChild.appendChild(script);

Additional Reading / Watching
Here I provide additional references for you to continue your journey of mastering the best programming language 
in the world!

I highly recommend my JavaScript Guide (http://pastebin.com/uWc3DSCy) it will eventually be merged with this book.

I also wrote a condensed version of Douglas Crockford's already very dense book The Good Parts available here 
(http://pastebin.com/N0nE2xCA).

I'm working on a collection of various JavaScript pitfalls you should be aware of available here 
(http://jsfiddle.net/gerst20051/BfNa8/).

If you're interested in various JavaScript assertions check this jsfiddle (http://jsfiddle.net/gerst20051/MGz6g/) 
out.

Tests / Experiments

http://kangax.github.io/jstests/ (http://kangax.github.io/jstests/)

Recommended YouTube Videos

Crockford on JavaScript: YUI Theater (8 Video Playlist) (http://www.youtube.com/playlist?list=PL7664379246A246CB)
• The Early Years ()
• And Then There Was JavaScript ()
• Function The Ultimate ()
• The Metamorphosis of Ajax ()
• The End of All Things ()
• Loopage ()
• ECMAScript 5: The New Parts ()
• Programming Style & Your Brain ()

The JavaScript Trilogy by Douglas Crockford (3 Video Playlist) (http://www.youtube.com/playlist?
list=PL5586336C26BDB324)
• Douglas Crockford: The JavaScript Programming Language (http://www.youtube.com/watch?v=v2ifWcnQs6M)
• In this 2007 presentation at Yahoo!, which is meant to be the beginning of a three-course sequence (followed by 
"Theory of the DOM" and then "Advanced JavaScript"), Douglas Crockford explores not only the language as it is 
today but also how the language came to be the way it is.
• Douglas Crockford: An Inconvenient API - The Theory of the DOM (http://www.youtube.com/watch?v=Y2Y0U-2qJMs)
• In an internal tech talk at Yahoo! in 2006, Douglas Crockford delves into the sordid history of the DOM: that 
"vast source of incompatibility, pain and misery" that frontend engineers love to hate.
• Douglas Crockford: Advanced JavaScript (http://www.youtube.com/watch?v=DwYPG6vreJg)
• In this presentation (the third of a three-part series) Douglas Crockford looks closely at code patterns from 

http://ads.com/buyme?rand=
http://pastebin.com/uWc3DSCy
http://pastebin.com/N0nE2xCA
http://jsfiddle.net/gerst20051/BfNa8/
http://jsfiddle.net/gerst20051/MGz6g/
http://kangax.github.io/jstests/
http://www.youtube.com/playlist?list=PL7664379246A246CB
http://hnswave.co/mastery/javascript.html
http://hnswave.co/mastery/javascript.html
http://hnswave.co/mastery/javascript.html
http://hnswave.co/mastery/javascript.html
http://hnswave.co/mastery/javascript.html
http://hnswave.co/mastery/javascript.html
http://hnswave.co/mastery/javascript.html
http://hnswave.co/mastery/javascript.html
http://www.youtube.com/playlist?list=PL5586336C26BDB324
http://www.youtube.com/watch?v=v2ifWcnQs6M
http://www.youtube.com/watch?v=Y2Y0U-2qJMs
http://www.youtube.com/watch?v=DwYPG6vreJg


which JavaScript programmers can choose in authoring their applications. He compares familiar constructs like the 
Pseudoclassical Pattern with more unique patterns like the Parasitic Pattern that (he argues) run more "with the 
grain" of JavaScript.

Google I/O 2011: Learning to Love JavaScript (http://www.youtube.com/watch?v=seX7jYI96GE)
• Alex Russell. JavaScript remains one of the most popular and important programming languages in history. Web 
Developer and Chrome Engineer Alex Russell exposes the timeless strengths of the JavaScript language and why it is 
a vital part of the open web platform. Come hear what's next for the JavaScript standard and how to get the most 
out of the new features coming soon in V8 and Chrome.
• Arrays are objects. Indexes get turned into strings and then referenced that way. Everything being an object 
also being a map.

JavaScript: The Good Parts (http://www.youtube.com/watch?v=hQVTIJBZook)
• Douglas Crockford. JavaScript is a language with more than its share of bad parts. It went from non-existence to 
global adoption in an alarmingly short period of time. It never had an interval in the lab when it could be tried 
out and polished. JavaScript has some extraordinarily good parts. In JavaScript there is a beautiful, highly 
expressive language that is buried under a steaming pile of good intentions and blunders. The best nature of 
JavaScript was so effectively hidden that for many years the prevailing opinion of JavaScript was that it was an 
unsightly, incompetent abomination. This session will expose the goodness in JavaScript, an outstanding dynamic 
programming language. Within the language is an elegant subset that is vastly superior to the language as a whole, 
being more reliable, readable and maintainable.

Javascript: Your New Overlord (http://www.youtube.com/watch?v=Trurfqh_6fQ)
• In this keynote presentation at JAXConf 2012, Douglas "The JavaScript Guy" Crockford asserts that JavaScript has 
become the most important programming language in the world.
• "The first time I saw JavaScript in 1995 I thought this is the stupidest thing I've ever seen. I said that. And 
I was pretty confident that I was right. ... In looking deeply at it I discovered it's got lambdas in it! Suddenly 
all this potential opened up."

Dave Herman: The Future of JavaScript (http://www.youtube.com/watch?v=u4IdoBU1uKE)
• Dave Herman. Mozilla Labs engineer and TC39 representative Dave Herman joined us at YUIConf 2011 to give this 
keynote talk on the future of JavaScript, covering many of the new features currently under consideration for ES6, 
the next edition of the ECMAScript standard.

Nicholas Zakas: Scalable JavaScript Application Architecture (http://www.youtube.com/watch?v=vXjVFPosQHw)
• SlideShare (http://www.slideshare.net/nzakas/scalable-javascript-application-architecture)
• Nicholas Zakas. Yahoo! home page engineer Nicholas Zakas, author of Professional JavaScript for Web Developers, 
discusses frontend architecture for complex, modular web applications with significant JavaScript elements.

Fluent 2012: Brendan Eich, "JavaScript at 17" (http://www.youtube.com/watch?v=Rj49rmc01Hs)
• Brendan Eich. Almost two decades after the birth of JavaScript, its creator gives a whirlwind history of the 
language with stories (and dirt!) dished out from each era. What worked well for JavaScript and what has continued 
to make developers groan? What's coming in ES6 and where next for the JavaScript community? Answers to these 
questions and more from as authoritative a source as it gets.

Introduction to Node.js with Ryan Dahl (http://www.youtube.com/watch?v=jo_B4LTHi3I)
• Node.js is a system for building network services for Google's V8 JavaScript engine. In this presentation Ryan 
Dahl, the man behind Node.js will introduce you to this event-driven I/O framework with a few examples showing 
Node.js in action. Ryan will also talk about the recent release of v0.4.0 and how to use some of the new APIs.

Node.js: JavaScript on the Server (http://www.youtube.com/watch?v=F6k8lTrAE2g)
• Ryan Dahl. Presented by Ryan Dahl, the creator of the node.JS open source project.
• It is well known that event loops rather than threads are required for high-performance servers. Javascript is a 
language unencumbered of threads and designed specifically to be used with synchronous evented I/O, making it an 
attractive means of programming server software.
• Node.js ties together the V8 Javascript compiler with an event loop, a thread pool for making blocking system 
calls, and a carefully designed HTTP parser to provide a browser-like interface to creating fast server-side 
software. This talk will explain Node's design and how to get started with it.

Hands on with Node.js / Beginner Guide / Getting Started (http://www.youtube.com/watch?v=_l96hPlqzcI)
• Node.js is an exciting new platform for building web applications in JavaScript. With its unique I/O model, it 
excels at the sort of scalable and real-time situations we are increasingly demanding of our servers. The ability 

http://www.youtube.com/watch?v=seX7jYI96GE
http://www.youtube.com/watch?v=hQVTIJBZook
http://www.youtube.com/watch?v=Trurfqh_6fQ
http://www.youtube.com/watch?v=u4IdoBU1uKE
http://www.youtube.com/watch?v=vXjVFPosQHw
http://www.slideshare.net/nzakas/scalable-javascript-application-architecture
http://www.youtube.com/watch?v=Rj49rmc01Hs
http://www.youtube.com/watch?v=jo_B4LTHi3I
http://www.youtube.com/watch?v=F6k8lTrAE2g
http://www.youtube.com/watch?v=_l96hPlqzcI


to use JavaScript for both the client and server opens up many possibilities for code sharing, expertise reuse, 
and rapid development. The class is intended for anyone looking to explore the capabilities of the Node.js 
development platform.
• At the end of the class, students will have gained a grasp on node's ecosystem and paradigms, be able to write 
node modules that they can publish and share, and will have experimented with writing realtime web applications.

Next Video ()
• Description

Thanks for reading my book, if you have any questions or suggestions feel free to email me at gerst20051@gmail.com

http://hnswave.co/mastery/javascript.html

